人文地理
 
  联系我们 | 在线留言 | 注册 | 遗忘密码?
  读者在线:
  用户名   密码   登录
2025年7月18日 星期五  首页 期刊介绍 编委会 作者中心 审稿中心 在线期刊 | 期刊订阅 | 下载中心 | 广告合作 友情链接 | 联系我们
人文地理  2021, Vol. 36 Issue (5): 121-130,176    DOI: 10.13959/j.issn.1003-2398.2021.05.015
城市 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于深度学习的城市热点空间情绪感知评价——以上海市为例
崔璐明1,2, 曲凌雁2, 何丹1,2
1. 华东师范大学 中国现代城市研究中心, 上海 200062;
2. 华东师范大学 城市与区域科学学院, 上海 200241
EVALUATING EMOTIONAL PERCEPTION OF SPATIAL HOTSPOTS VIA DEEP LEARNING: A CASE STUDY OF SHANGHAI
CUI Lu-ming1,2, QU Ling-yan2, HE Dan1,2
1. The Center for Modern Chinese City Studies, East China Normal University, Shanghai 200062, China;
2. School of Urban and Regional Science, East China Normal University, Shanghai 200241, China

全文: PDF (57056 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 基于新浪微博数据,借助深度学习方法分析上海市情绪空间分布特征,期望构建一套基于社交媒体签到数据的深度学习空间情绪感知评价方法。研究发现:①上海市热门签到地点集中分布在城市中心、交通枢纽、地铁沿线等区域。②积极情绪占比随着到市中心距离的增加呈下降趋势;人们的情绪与活动空间类型高度相关。③高等院校场所与负面情绪相关的物质空间要素多与建筑相关,办公场所的空间使用者最关注通勤问题,交通枢纽空间的管理流程和服务水平诱发了较多负面情绪。研究发现对于城市公共安全、公共卫生和设计管理的决策者有着重要启示。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔璐明
曲凌雁
何丹
关键词 深度学习BERT模型签到 POI地图情绪地图感知评价    
Abstract:The study on spatial emotional perception which arises from the intersection between Spatial Psychology and Geography is an important field of Human Geography. But its development has long been limited by data access and methods. Deep learning can provide the strong support for the quantitative analysis of spatial emotional perception. This paper attempts to build a deep learning framework which based on social media sign-in data to evaluate and analyze spatial emotional perception. In this work, emotional perceptions were classified into six categories, such as joy, affection, distress, angry, disgust and null. The pre-trained language model named Bidirectional Encoder Representations from Transformers was used to analyze the emotional expression of active users and generate the emotional perception map. Compared with the traditional sentiment analysis model, the Bidirectional Encoder Representations from Transformers has a greater degree of improvement in correctness. Then part-of-speech analysis was applied to the comments extracted to investigate the cause of the emotional perception. In the last, this paper used Lexical Analysis of Chinese, a lexical analysis tool developed by Baidu, for lexical analysis and named entity recognition. In total, 813,633 geotagged social media data and 1619 POI were collected from Shanghai. The main findings were as follows:1) The most popular sign-in locations in Shanghai are concentrated in the inner-city, transportation hubs and important public facilities. 2) The proportion of positive emotions shows an overall decrease with the increase of the distance to the city center. 3) Producers' emotional perception of various activity spaces were mostly positive opinions, so the results of commentary viewpoint extraction were similar.
Key wordsdeep learning    BERT model    sign-in map    emotion map    perception evaluation   
收稿日期: 2020-12-09     
PACS: K901  
基金资助:国家自然科学基金项目(41471138)
通讯作者: 何丹(1971-),男,云南昆明人,博士,副教授,主要研究方向为城市发展与城市规划。E-mail:dhe@re.ecnu.edu.cn。     E-mail: dhe@re.ecnu.edu.cn
作者简介: 崔璐明(1993-),女,河南新乡人,博士研究生,主要研究方向为城市地理与城市经济。E-mail:lmcui0501@163.com。
引用本文:   
崔璐明, 曲凌雁, 何丹. 基于深度学习的城市热点空间情绪感知评价——以上海市为例[J]. 人文地理, 2021, 36(5): 121-130,176. CUI Lu-ming, QU Ling-yan, HE Dan. EVALUATING EMOTIONAL PERCEPTION OF SPATIAL HOTSPOTS VIA DEEP LEARNING: A CASE STUDY OF SHANGHAI. HUMAN GEOGRAPHY, 2021, 36(5): 121-130,176.
链接本文:  
http://rwdl.xisu.edu.cn/CN/10.13959/j.issn.1003-2398.2021.05.015      或     http://rwdl.xisu.edu.cn/CN/Y2021/V36/I5/121
2011 © 人文地理编辑部 版权所有
技术支持: 北京玛格泰克科技发展有限公司