POI-BASED ANALYSIS ON THE AFFECTING FACTORS OF PROPERTY PRICES' SPATIAL DISTRIBUTION IN THE TRADITIONAL INDUSTRIAL AREA
XUE Bing1,2, XIAO Xiao1,2, LI Jing-zhong2,3, XIE Xiao1,2, REN Wan-xia1,2, LU Cheng-peng1,2, JIANG Lu1,2,4
1. Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
2. Key Lab for Environmental Computation and Sustainability of Liaoning Province, Shenyang 110016, China;
3. College of Urban Planning and Architecture, Xuchang University, Xuchang 461000, China;
4. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Abstract:Based on the residential POI data of the Tiexi District in Shenyang, a geographical weighted regression (GWR) model was constructed by adding three variables that could affect the traditional industrial area's property prices as well as the traditional variables, the three added variables include house age, residential density and the distance between residences and industries. The results show that:house age, residential density, public transport, public facilities and so on have a significant effect on property prices, while industrial enterprises and other factors have a certain effect on price inhibition. The relativities between all kinds of influence factors and residential prices have remarkable spatial non-stationary, showing that the intensity gradient of the regression coefficient of one-way influencing factors such as residential density, subway station distance, as well as the difference between the positive and negative effects of factors such as factory distance, bus density, shopping mall distance in the traditional and new urban areas.
薛冰, 肖骁, 李京忠, 谢潇, 任婉侠, 逯承鹏, 姜璐. 基于POI大数据的老工业区房价影响因素空间分异与实证[J]. 人文地理, 2019, 34(4): 106-114.
XUE Bing, XIAO Xiao, LI Jing-zhong, XIE Xiao, REN Wan-xia, LU Cheng-peng, JIANG Lu. POI-BASED ANALYSIS ON THE AFFECTING FACTORS OF PROPERTY PRICES' SPATIAL DISTRIBUTION IN THE TRADITIONAL INDUSTRIAL AREA. HUMAN GEOGRAPHY, 2019, 34(4): 106-114.
张静,张丽芳,濮励杰,等.基于GWR模型的城市住宅地价的时空演变研究——以江苏省为例[J]. 地理科学,2012,32(7):828-834.[Zhang Jing, Zhang Lifang, Pu Lijie, et al. Research on spatio-temporal variation of urban residential land pricebased on GWR model:A case study of Jiangsu province[J]. Scientia Geographica Sinica, 2012,32(7):828-834.]
[2]
赵智博.沈阳市房地产市场现状及发展趋势研究[D].沈阳:沈阳建筑大学,2015:1-2.[Zhao Zhibo. Study on the Real Estate's Status and Development Trend of Shenyang City[D]. Shenyang:Shenyang Jianzhu University, 2015:1-2.]
[3]
彭保发,石忆邵,单玥,等.上海市三甲医院对周边地区住房价格的空间影响效应分析[J].地理科学,2015,35(7):860-866.[Peng Baofa, Shi Yishao, Shan Yue, et al. The spatial impacts of class 3A comprehensive hospitals on peripheral residential property prices in Shanghai[J]. Scientia Geographica Sinica, 2015,35(7):860-866.]
[4]
宋伟轩,刘春卉.长三角一体化区域城市商品住宅价格分异机理研究[J].地理研究,2018,37(1):92-102.[Song Weixuan, Liu Chunhui. The price differentiation mechanism of commercial housing in the Yangtze River Delta[J]. Geographical Research, 2018,37(1):92-102.]
[5]
董冠鹏,张文忠,武文杰,等.北京城市住宅土地市场空间异质性模拟与预测[J]. 地理学报,2011,66(6):750-760.[Dong Guanpeng, Zhang Wenzhong, Wu Wenjie, et al. Spatial heterogeneity in determinants of residential land price:Simulation and prediction[J]. Acta Geographica Sinica, 2011,66(6):750-760.]
[6]
李广娣,沈昊婧.城市住房价格的空间分布格局研究——以沈阳市为例[J].现代城市研究,2014(2):80-84.[Li Guangdi, Shen Haojing. Research on spatial distribution pattern of urban housing prices:A case study in Shenyang[J]. Modern Urban Research, 2014(2):80-84.]
[7]
邹利林,杨俊,胡学东.中国城市房价时空演变研究进展与展望[J]. 地理科学进展,2013,32(10):1479-1489.[Zou Lilin, Yang Jun, Hu Xuedong. Research on temporal-spatial changes of urban residential housing price in China:Progress and prospects[J]. Progress in Geography, 2013,32(10):1479-1489.]
[8]
Lancaster K J. A new approach to consumer theory[J]. Journal of Political Economy, 1966,74(2):132-157.
[9]
Rosen Sherwin. Hedonic prices and implicit markets:Product differentiation in pure competition[J]. Journal of Political Economy, 1974, 82(1):35-55.
[10]
Stevenson S. New empirical evidence on heteroscedasticity in hedonic housing models[J]. Journal of Housing Economics, 2004,13(2):136-153.
[11]
He C, Wang Z, Guo H, et al. Driving forces analysis for residential housing price in Beijing[J]. Procedia Environmental Sciences, 2010, 2(1):925-936.
[12]
隋雪艳,吴巍,周生路,等.都市新区住宅地价空间异质性驱动因素研究——基于空间扩展模型和GWR模型的对比[J].地理科学, 2015,35(6):683-689.[Sui Xueyan, Wu Wei, Zhou Shenglu, et al. Drive pattern on the spatial heterogeneity of residential land price in urban district:A comparison of spatial expansion method and GWR model[J]. Scientia Geographica Sinica, 2015,35(6):683-689.]
[13]
宋伟轩,毛宁,陈培阳,等.基于住宅价格视角的居住分异耦合机制与时空特征——以南京为例[J].地理学报,2017,72(4):589-602.[Song Weixuan, Mao Ning, Chen Peiyang, et al. Coupling mechanism and spatial-temporal pattern of residential differentiation from the perspective of housing prices:A case study of Nanjing[J]. Acta Geographica Sinica, 2017,72(4):589-602.]
[14]
苏方林.中国R&D与经济增长的空间统计分析[D].上海:华东师范大学,2005:57-60.[Su Fanglin. Spatial Analysis of R&D and Economic Growth of China[D]. Shanghai:East China Normal University, 2005:57-60.]
[15]
吴玉鸣,李建霞.基于地理加权回归模型的省域工业全要素生产率分析[J].经济地理,2006,26(5):748-752.[Wu Yuming, Li Jianxia. Analysis of China's provincial industrial total factor productivity based on geographical weighted regression model[J]. Economic Geography, 2006,26(5):748-752.
[16]
Bitter C, Mulligan G F, Dall'erba S. Incorporating spatial variation in housing attribute prices:A comparison of geographically weighted regression and the spatial expansion method[J]. Journal of Geographical Systems, 2007,9(1):7-27.
[17]
Mccord M, Davis P T, Haran M, et al. Spatial variation as a determinant of house price[J]. Polymer Engineering & Science, 2013,44(12):2229-2239.
[18]
李志,周生路,张红富,等.基于GWR模型的南京市住宅地价影响因素及其边际价格作用研究[J].中国土地科学,2009,23(10):20-25.[Li Zhi, Zhou Shenglu, Zhang Hongfu, et al. Exploring the factors impacting on the residential land price and measuring their marginal effects based on GWR model:A case study of Nanjing[J]. China Land Science, 2009,23(10):20-25.]
[19]
吕萍,甄辉.基于GWR模型的北京市住宅用地价格影响因素及其空间规律研究[J].经济地理,2010,30(3):472-478.[Lv Ping, Zhen Hui. Affecting factors research of Beijing residential land price based on GWR model[J]. Economic Geography, 2010,30(3):472-478.]
[20]
Efthymiou D, Antoniou C. How do transport infrastructure and policies affect house prices and rents? Evidence from Athens, Greece[J]. Transportation Research Part A:Policy & Practice, 2013,52(2):1-22.
[21]
石忆邵,徐妍菲.行政区划调整对房价变化的影响效应分析:以南汇并入浦东新区为例[J].经济地理,2011,31(9):1452-1457.[Shi Yishao, Xu Yanfei. Impact of adjustment of administrative divisions upon the changes of housing prices:The case of Nanhui district merged into Pudong New Area[J]. Economic Geography, 2011, 31(9):1452-1457.]
[22]
杨剩富,胡守庚,徐枫,等.特殊自然地物对城市住宅地价和房价的影响——以武汉市为例[J].资源科学,2016,38(4):738-749.[Yang Shengfu, Hu Shougeng, Xu Feng, et al. Influence on urban residential land and housing prices by special natural features in Wuhan[J]. Resources Science, 2016,38(4):738-749.]
[23]
赵华平,张所地.矿业城市商品房价影响因素研究[J].中国土地科学,2014,28(7):46-53.[Zhao Huaping, Zhang Suodi. Research on impact factors on commercial housing price in mining cities[J]. China Land Science, 2014,28(7):46-53.]
[24]
汪佳莉,季民河,邓中伟.基于地理加权特征价格法的上海外环内住宅租金分布成因分析[J].地域研究与开发,2016,35(5):72-80.[Wang Jiali, Ji Minhe, Deng Zhongwei. Factors behind residential rent distribution in outer ring of Shanghai:A GWR-based hedonic price analysis[J]. Areal Research and Development, 2016,35(5):72-80.]
[25]
李霖,杨蕾.公众参与的兴趣点数据有效性效验方法[J].测绘科学, 2015,40(7):98-103.[Li Lin, Yang Lei. A verifying method on validity of POI data involving public participation[J]. Science of Surveying and Mapping, 2015,40(7):98-103.]
[26]
李江苏,梁燕,王晓蕊.基于POI数据的郑东新区服务业空间聚类研究[J]. 地理研究,2018,37(1):145-157.[Li Jiangsu, Liang Yan, Wang Xiaorui. Spatial clustering analysis of service industries in Zhengdong New District based on POI data[J]. Geographical Research, 2018,37(1):145-157.]
[27]
薛冰,张黎明,耿涌,等.基于空间重构视角的老工业区人地关系研究——以沈阳铁西为例[J].地理科学2015,35(7):890-897.[Xue Bing, Zhang Liming, Geng Yong, et al. Spatial-restructuring analysis of human-land relationships in an old industrial area:The case of the Tiexi district, Shenyang[J]. Scientia Geographica Sinica, 2015,35(7):890-897.]
[28]
徐岩岩,刘淼,胡远满,等.沈阳市铁西老工业区更新过程中建筑景观变化[J]. 生态学杂志,2017,36(2):499-507.[Xu Yanyan, Liu Miao, Hu Yuanman, et al. Changes of architectural landscape in renewal of old industrial zone in Tiexi district, Shenyang[J]. Chinese Journal of Ecology, 2017,36(2):499-507.]
[29]
Zhang L, Geng Y, Dong H, et al. Emergy-based assessment on the brownfield redevelopment of one old industrial area:A case of Tiexi in China[J]. Journal of Cleaner Production, 2016,114:150-159.
[30]
张平宇.沈阳铁西工业区改造的制度与文化因素[J].人文地理, 2006,21(2):45-49.[Zhang Pingyu. Institutional and cultural factors for the reconstruction of Shenyang Tiexi industrial zone[J]. Human Geography, 2006,21(2):45-49.]
[31]
马志孝,任婉侠,薛冰,等.老工业搬迁区街道灰尘重金属污染物的人体健康风险评价——以沈阳铁西老工业区为例[J].生态科学, 2014,33(5):963-971.[Ma Zhixiao, Ren Wanxia, Xue Bing, et al. Human health risk assessment of heavy metal pollutants in redevelopment brownfield area[J]. Ecological Science, 2014,33(5):963-971.]
[32]
Ren W, Xue B, Geng Y, et al. Inventorying heavy metal pollution in redeveloped brownfield and its policy contribution:Case study from Tiexi district, Shenyang, China[J]. Land Use Policy, 2014,38(2):138-146.
[33]
Zhang L, Xue B, Geng Y, et al. Emergy-based city's sustainability assessment:Indicators, features and findings[J]. Sustainability, 2014,6(2):952-966.
[34]
薛冰,肖骁,李京忠,等.基于POI大数据的城市零售业空间热点分析——以辽宁省沈阳市为例[J].经济地理,2018,38(5):36-43.[Xue Bing, Xiao Xiao, Li Jingzhong, et al. POI-based analysis on retail's spatial hot blocks at a city level:A case study of Shenyang, China[J]. Economic Geography, 2018,38(5):36-43.]
[35]
杨青,逯承鹏,周锋,等.基于能值-生态足迹模型的东北老工业基地生态安全评价——以辽宁省为例[J].应用生态学报,2016,27(5):1-9.[Yang Qing, Lu Chengpeng, Zhou Feng, et al. An emergy-ecological footprint model based evaluation of ecological security at the old industrial area in Northeast China:A case study of Liaoning province[J]. Chinese Journal of Applied Ecology, 2016,27(5):1-9.]
[36]
Xue B, Zhang L, Geng Y, et al. Extended land-use coding system and its application in urban brownfield redevelopment:Case study of Tiexi district in Shenyang, China[J]. Journal of Urban Planning & Development, 2016,142(3):05015014.
[37]
黄永明,何凌云.城市化、环境污染与居民主观幸福感——来自中国的经验证据[J].中国软科学,2013(12):82-93.[Huang Yongming, He Lingyun. Urbanization, environmental pollution and subjective well-being:An empirical study on China[J]. China Soft Science, 2013(12):82-93.]
[38]
王洋.住宅优势度的理论与评价方法[J].人文地理,2016,31(4):66-71.[Wang Yang. The theory and evaluation method of the housing dominance[J]. Human Geography, 2016,31(4):66-71.]
[39]
曹天邦,黄克龙,李剑波,等.基于GWR的南京市住宅地价空间分异及演变[J].地理研究,2013,32(12):2324-2333.[Cao Tianbang, Huang Kelong, Li Jianbo, et al. Research on spatial variation and evolution of residential land price in Nanjing based on GWR model[J]. Geographical Research, 2013,32(12):2324-2333.]