人文地理
 
  联系我们 | 在线留言 | 注册 | 遗忘密码?
  读者在线:
  用户名   密码   登录
2025年5月19日 星期一  首页 期刊介绍 编委会 作者中心 审稿中心 在线期刊 | 期刊订阅 | 下载中心 | 广告合作 友情链接 | 联系我们
人文地理  2024, Vol. 39 Issue (3): 44-53,114    DOI: 10.13959/j.issn.1003-2398.2024.03.005
社会 最新目录| 下期目录| 过刊浏览| 高级检索 |
中国流动老年人口城市心理融入空间差异及影响因素研究
毛小洪, 杨成凤, 阳港
安徽师范大学 地理与旅游学院, 芜湖 241003
SPATIAL DIFFERENCE OF FLOATING ELDERLY POPULATION’S URBAN PSYCHOLOGICAL INTEGRATION AND HETEROGENEITY OF INFLUENCING FACTORS IN CHINA
MAO Xiao-hong, YANG Cheng-feng, YANG Gang
School of Geography and Tourism, Anhui Normal University, Wuhu 241003, China

全文: PDF (5187 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 运用2017年中国流动人口动态监测数据,从融入意愿、心理距离、身份认同三个方面对中国地级及以上城市流动老年人口城市心理融入水平进行测度,在此基础上运用多尺度地理加权回归以及K均值聚类方法,对其空间差异和影响因素展开研究。研究发现:①中国流动老年人口城市心理融入水平整体较高,但其空间差异特征显著,呈现川渝、西北以及东北等地区较高,华南、中东部沿海地区明显滞后的分异格局。②流动老年人城市心理融入水平受到其自身层面流动、家庭、户籍地、个体行为因素以及流入城市的公共服务共同影响,但不同影响因素存在显著的空间异质性和空间尺度差异。以此为依据,利用 K 均值聚类方法将其划分为家庭、户籍和行为因素主导区、健康服务因素主导区、行为因素主导区以及多因素共同作用区四大影响区域,为因地制宜、有针对性地制定相关政策提供一定依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛小洪
杨成凤
阳港
关键词 流动老年人口城市心理融入空间异质性多尺度地理加权回归    
Abstract:Based on the data from the 2017 national migrant population dynamic monitoring survey(CMDS), this paper measures the urban psychological integration level of the floating elderly population in prefecturelevel and above cities in China from three aspects: integration willingness, psychological distance and identity. On this basis, multi-scale geographically weighted regression(MGWR) and K-means cluster methods are used to study its spatial differences and influencing factors. The results show that: 1) The level of floating elderly population's urban psychological integration in China is generally high, but its spatial difference is obvious, showing a high level in Sichuan-Chongqing, northwest, northeast areas, and a significant lag in the coastal areas of South China and Middle East. 2) The level of floating elderly population's urban psychological integration is jointly affected by the factors of mobility, family and registered residence and individual behavior at their own level, as well as the public services of the cities where they migrate. However, there were significant spatial heterogeneity and spatial scale differences among different influencing factor. Based on this, the K-means cluster method is used to divide it into four influence areas: The dominant area of household, household registration and behavioral factors, the dominant area of health service factors, the dominant area of behavioral factors and the dominant area of multi-factor co-action, it can provide some basis for making relevant policies according to local conditions.
Key wordsfloating elderly population    urban psychological integration    spatial heterogeneity    multi-scale geographically weighted regression   
收稿日期: 2023-04-28     
PACS: K901.3  
基金资助:国家自然科学基金项目(41901193,42271224);安徽省高校优秀青年科研项目(2022AH030019)
通讯作者: 杨成凤(1986—),女,安徽黄山人,博士,副教授,硕士生导师,主要研究方向为城市地理与城市经济。E-mail:phoenixycf@163.com。     E-mail: phoenixycf@163.com
作者简介: 毛小洪(1998—),女,重庆人,硕士生,主要研究方向为流动人口城市融入。E-mail:M070811280322@163.com。
引用本文:   
毛小洪, 杨成凤, 阳港. 中国流动老年人口城市心理融入空间差异及影响因素研究[J]. 人文地理, 2024, 39(3): 44-53,114. MAO Xiao-hong, YANG Cheng-feng, YANG Gang. SPATIAL DIFFERENCE OF FLOATING ELDERLY POPULATION’S URBAN PSYCHOLOGICAL INTEGRATION AND HETEROGENEITY OF INFLUENCING FACTORS IN CHINA. HUMAN GEOGRAPHY, 2024, 39(3): 44-53,114.
链接本文:  
http://rwdl.xisu.edu.cn/CN/10.13959/j.issn.1003-2398.2024.03.005      或     http://rwdl.xisu.edu.cn/CN/Y2024/V39/I3/44
2011 © 人文地理编辑部 版权所有
技术支持: 北京玛格泰克科技发展有限公司