人文地理
 
  联系我们 | 在线留言 | 注册 | 遗忘密码?
  读者在线:
  用户名   密码   登录
2025年4月9日 星期三  首页 期刊介绍 编委会 作者中心 审稿中心 在线期刊 | 期刊订阅 | 下载中心 | 广告合作 友情链接 | 联系我们
人文地理  2023, Vol. 38 Issue (3): 164-172    DOI: 10.13959/j.issn.1003-2398.2023.03.018
旅游 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于街景照片的城市旅游情感空间探测研究
卢欢1,2, 杨淼甜1,2, 张妍妍1,2, 李君轶1,2
1. 陕西师范大学 地理科学与旅游学院, 西安 710119;
2. 陕西省旅游信息科学重点实验室, 西安 710119
URBAN TOURISM SENTIMENT SPATIAL DETECTION BASED ON STREET VIEW PHOTOS
LU Huan1,2, YANG Miao-tian1,2, ZHANG Yan-yan1,2, LI Jun-yi1,2
1. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China;
2. Shaanxi Key Laboratory of Tourism Informatics, Xi'an 710119, China

全文: PDF (14223 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 图片城市主义范式下,街景照片成为游客感知城市环境的一种新型大数据。然而,由于技术限制,基于照片大数据的旅游情感研究仍处于初步探索阶段。本文从情感地理学视角出发,引入计算机视觉领域的深度学习方法,实证测度了西安市典型旅游街区的情感空间特征。研究发现:基于街景照片的深度学习模型能够比较准确地探测城市旅游情感空间特征;西安市典型旅游街区旅游积极和消极情感在空间上呈现不同类型的集聚格局;西安市典型旅游街区内部呈现多种旅游情感复杂交错的特征;问卷数据一定程度上验证了深度学习模型预测结果的合理性。研究结果为游客与城市环境互动研究提供了新的方法论视角,也为城市旅游环境的改造和规划提供了理论依据和实践指导。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢欢
杨淼甜
张妍妍
李君轶
关键词 街景照片深度学习旅游情感空间探测    
Abstract:Under the paradigm of pictorial urbanism, street view photos have become a new type of big data technique for tourists to perceive the urban environment. However, due to technical limitations, tourism sentiment researches based on photos are still at the preliminary exploration stage. This paper introduces a deep learning model in order to measure the tourism emotions of street view photos by the computer vision. It empirically analyses the emotional spatial characteristics of typical tourist blocks in Xi'an. It shows the deep learning model can accurately detect the spatial characteristics of urban tourism emotions using street view photos as a data source; the positive emotions and negative emotions of typical tourist blocks in Xi'an show different types of agglomeration patterns; the tourism emotions inside typical tourist blocks in Xi'an show complex and diverse characteristics. It is found that although the Bell and Drum Tower region, Xiaozhai region and Qujiang region are three different types of tourism blocks, the tourism emotion space detection results have the following commonalities: 1) The positive emotional space is mainly concentrated around the main road, universities, shopping malls or scenic spots and their surrounding areas; 2) The positive emotional space is slightly different with different functional zones and different emotional types; 3) The distribution of negative emotional space is more obvious than that of the positive emotional space. From the results of emotion space exploration, it reflects the interaction and mutual influence of people, environment and emotion from the perspective of emotional geography.
Key wordsstreet view photos    deep learning    tourism emotions    space exploration   
收稿日期: 2022-02-10     
PACS: F590.1  
基金资助:国家自然科学基金面上项目(42071169);中央高校基本科研业务费专项资金项目(1301030542)
通讯作者: 李君轶(1975-),男,宁夏固原人,博士,教授,博士生导师,主要研究方向为旅游信息科学。E-mail:lijunyi9@snnu.edu.cn。     E-mail: lijunyi9@snnu.edu.cn
作者简介: 卢欢(1986—),女,陕西咸阳人,博士,讲师,主要研究方向为游客行为。E-mail:huanlu@snnu.edu.cn。
引用本文:   
卢欢, 杨淼甜, 张妍妍, 李君轶. 基于街景照片的城市旅游情感空间探测研究[J]. 人文地理, 2023, 38(3): 164-172. LU Huan, YANG Miao-tian, ZHANG Yan-yan, LI Jun-yi. URBAN TOURISM SENTIMENT SPATIAL DETECTION BASED ON STREET VIEW PHOTOS. HUMAN GEOGRAPHY, 2023, 38(3): 164-172.
链接本文:  
http://rwdl.xisu.edu.cn/CN/10.13959/j.issn.1003-2398.2023.03.018      或     http://rwdl.xisu.edu.cn/CN/Y2023/V38/I3/164
2011 © 人文地理编辑部 版权所有
技术支持: 北京玛格泰克科技发展有限公司