URBAN TOURISM SENTIMENT SPATIAL DETECTION BASED ON STREET VIEW PHOTOS
LU Huan1,2, YANG Miao-tian1,2, ZHANG Yan-yan1,2, LI Jun-yi1,2
1. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China;
2. Shaanxi Key Laboratory of Tourism Informatics, Xi'an 710119, China
Abstract:Under the paradigm of pictorial urbanism, street view photos have become a new type of big data technique for tourists to perceive the urban environment. However, due to technical limitations, tourism sentiment researches based on photos are still at the preliminary exploration stage. This paper introduces a deep learning model in order to measure the tourism emotions of street view photos by the computer vision. It empirically analyses the emotional spatial characteristics of typical tourist blocks in Xi'an. It shows the deep learning model can accurately detect the spatial characteristics of urban tourism emotions using street view photos as a data source; the positive emotions and negative emotions of typical tourist blocks in Xi'an show different types of agglomeration patterns; the tourism emotions inside typical tourist blocks in Xi'an show complex and diverse characteristics. It is found that although the Bell and Drum Tower region, Xiaozhai region and Qujiang region are three different types of tourism blocks, the tourism emotion space detection results have the following commonalities: 1) The positive emotional space is mainly concentrated around the main road, universities, shopping malls or scenic spots and their surrounding areas; 2) The positive emotional space is slightly different with different functional zones and different emotional types; 3) The distribution of negative emotional space is more obvious than that of the positive emotional space. From the results of emotion space exploration, it reflects the interaction and mutual influence of people, environment and emotion from the perspective of emotional geography.
卢欢, 杨淼甜, 张妍妍, 李君轶. 基于街景照片的城市旅游情感空间探测研究[J]. 人文地理, 2023, 38(3): 164-172.
LU Huan, YANG Miao-tian, ZHANG Yan-yan, LI Jun-yi. URBAN TOURISM SENTIMENT SPATIAL DETECTION BASED ON STREET VIEW PHOTOS. HUMAN GEOGRAPHY, 2023, 38(3): 164-172.
朱竑,高权.西方地理学"情感转向"与情感地理学研究述评[J].地理研究,2015,34(7):1394-1406.[Zhu Hong, Gao Quan. Review on "emotional turn" and emotional geographies in recent western geography[J]. Geographical Research, 2015,34(7):1394-1406.]
[2]
蹇嘉,甄峰,席广亮,等.西方情绪地理学研究进展与启示[J].世界地理研究,2016,25(2):123-136.[Jian Jia, Zhen Feng, Xi Guangliang, et al. A review on emotional geography:Its progress and enlightenment[J]. World Regional Studies, 2016,25(2):123-136.]
[3]
Anderson K, Smith S J. Emotional geographies[J]. Transactions of the Institute of British geographers, 2001,26(1):7-10.
[4]
Pile S. Emotions and affect in recent human geography[J]. Transactions of the Institute of British Geographers, 2010,35(1):5-20.
[5]
林锦屏,冯佳佳,张博文,等.国内外情感地理研究热点内涵及意义——基于文献计量与可视化[J].热带地理,2022,42(6):939-951.[Lin Jinping, Feng Jiajia, Zhang Bowen, et al. Research hotspots, connotation, and significance of emotional geography at home and abroad:Based on bibliometrics and visualization[J]. Tropical Geography, 2022,42(6):939-951.]
[6]
Kang Y, Jia Q, Gao S, et al. Extracting human emotions at different places based on facial expressions and spatial clustering analysis[J]. Transactions in GIS, 2019,23(3):450-480.
[7]
Winkielman P, Berridge K C. Unconscious emotion[J]. Current Directions in Psychological Science, 2004,13(3):120-123.
[8]
Mitas O, Bastiaansen M. Novelty:A mechanism of tourists' enjoyment[J]. Annals of Tourism Research, 2018,72(9):98-108.
[9]
马天,谢彦君.旅游体验中的情感与情感研究:现状与进展[J].旅游导刊,2019,3(2):82-101.[Ma Tian, Xie Yanjun. The study of emotion in tourist experience:Current research progress[J]. Tourism and Hospitality Prospects, 2019,3(2):82-101.]
[10]
陈钢华,李萌.旅游者情感研究进展:历程、主题、理论与方法[J].旅游学刊,2020,35(7):99-116.[Chen Ganghua, Li Meng. Research on tourist emotions:Development process, topic themes, theories, and methodology[J]. Tourism Tribune, 2020,35(7):99-116.]
[11]
Wang L, Hou Y, Chen Z. Are rich and diverse emotions beneficial?The impact of emodiversity on tourists' experiences[J]. Journal of Travel Research, 2021,60(5):1085-1103.
[12]
李君轶,纪星,李振亭.欧美旅游者在秦始皇帝陵博物院的情感体验时空变化[J].人文地理,2018,33(3):129-136.[Li Junyi, Ji Xing, Li Zhenting. Study on spatio-temporal variation of western tourists' emotional experiences:A case study of Qin terra-cotta warriors and horses museum[J]. Human Geography, 2018,33(3):129-136.]
[13]
Shoval N, Schvimer Y, Tamir M. Tracking technologies and urban analysis:Adding the emotional dimension[J]. Cities, 2018,72:34-42.
[14]
Shoval N, Schvimer Y, Tamir M. Real-time measurement of tourists' objective and subjective emotions in time and space[J]. Journal of Travel Research, 2018,57(1):3-16.
[15]
于静.基于微博大数据的游客情感及时空变化研究[D].西安:陕西师范大学,2015:19-30.[Yu Jing. Research on Tourists' Emotion and Spatio-Temporal Variation Based on Micro-Blog Big Data:A Case Study of Xi'an[D]. Xi'an:Shaanxi Normal University, 2015:19-30.]
[16]
李君轶,朱函杰,付利利.基于大数据的西安市国内游客情感体验时空变化研究[J].干旱区地理,2020,43(4):1067-1076.[Li Junyi, Zhu Hanjie, Fu Lili. Spatial-temporal variation of emotional experience of domestic tourists in Xi'an city based on big data[J]. Arid Land Geography, 2020,43(4):1067-1076.]
[17]
龙瀛,周垠.图片城市主义:人本尺度城市形态研究的新思路[J].规划师,2017,33(2):54-60.[Long Ying, Zhou Yin. Pictorial urbanism:A new approach for human scale urban morphology study[J]. Planners, 2017,33(2):54-60.]
[18]
张坤,李春林,张津沂.基于图片大数据的入境游客感知和行为演变研究——以北京市为例[J].旅游学刊,2020,35(8):61-70.[Zhang Kun, Li Chunlin, Zhang Jinyi. A study on the spatio-temporal evolution of inbound tourists' perceptions and behaviors based on big pictorial data:The case of Beijing[J]. Tourism Tribune, 2020,35(8):61-70.]
[19]
Kim J, Fesenmaier D R. Measuring emotions in real time:Implications for tourism experience design[J]. Journal of Travel Research, 2015,54(4):419-429.
[20]
Qiu L, Lin H, Leung A K, et al. Putting their best foot forward:Emotional disclosure on Facebook[J]. Cyberpsychology, Behavior, and Social Networking, 2012,15(10):569-572.
[21]
Ashkezari-Toussi S, Kamel M, Sadoghi-Yazdi H. Emotional maps based on social networks data to analyze cities emotional structure and measure their emotional similarity[J]. Cities, 2019,86:113-124.
[22]
唐婧娴,龙瀛,翟炜,等.街道空间品质的测度、变化评价与影响因素识别——基于大规模多时相街景图片的分析[J].新建筑,2016(5):110-115.[Tang Jingxian, Long Ying, Zhai Wei, et al. Measuring quality of street space, its temporal variation and impact factors:An analysis based on massive street view pictures[J]. New Architecture, 2016(5):110-115.]
[23]
叶宇,张灵珠,颜文涛,等.街道绿化品质的人本视角测度框架——基于百度街景数据和机器学习的大规模分析[J].风景园林,2018, 25(8):24-29.[Ye Yu, Zhang Lingzhu, Yan Wentao, et al. Measuring street greening quality from humanistic perspective:A large-scale analysis based on Baidu Street View Images and machine learning algorithms[J]. Landscape Architecture, 2018,25(8):24-29.]
[24]
Zhang F, Zhou B, Liu L, et al. Measuring human perceptions of a large-scale urban region using machine learning[J]. Landscape and Urban Planning, 2018,180:148-160.
[25]
Cai G, Lee K, Lee I. Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos[J]. Expert Systems with Applications, 2018,94:32-40.
[26]
Nikjoo A, Bakhshi H. The presence of tourists and residents in shared travel photos[J]. Tourism Management, 2019,70:89-98.
[27]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Bajcsy R, Li F, Tuytelaars T. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE, 2016:770-778.
[28]
李羽佳. ASG综合法景观视觉质量评价研究[D].哈尔滨:东北林业大学, 2014:13-30.[Li Yujia. Evaluation of Landscape Vision Quality by ASG Synthesis Method[D]. Ha'erbin:Northeast Forestry University, 2014:13-30.]
[29]
杨公侠.视觉与视觉环境[M].上海:同济大学出版社,2002:19-20.[Yang Gongxia. Vision and Visual Environment[M]. Shanghai:Tongji University Press, 2002:19-20.]
[30]
Valtchanov D, Ellard C G. Cognitive and affective responses to natural scenes:Effects of low level visual properties on preference, cognitive load and eye-movements[J]. Journal of Environmental Psychology, 2015,43:184-195.
[31]
Eakins J P. Automatic image content retrieval-are we getting anywhere?[C]//Collier M, Arnold K. Proceedings of the Third International Conference on Electronic Library and Visual Information Research (ELVIRA3). Leicester:De Montfort University, 1996:123-135.
[32]
Kang Y, Zhang F, Gao S, et al. A review of urban physical environment sensing using street view imagery in public health studies[J]. Annals of GIS, 2020,26(3):261-275.
[33]
陈超,齐峰.卷积神经网络的发展及其在计算机视觉领域中的应用综述[J].计算机科学,2019,46(3):63-73.[Chen Chao, Qi Feng. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science, 2019,46(3):63-73.]
[34]
刘逸,孟令坤,保继刚,等.人工计算模型与机器学习模型的情感捕捉效度比较研究——以旅游评论数据为例[J].南开管理评论, 2021,24(5):63-74.[Li Yi, Meng Lingkun, Bao Jigang, et al. A comparative study of emotional computing methods:Will machine learning be overwhelming?[J]. Nankai Business Review, 2021, 24(5):63-74.]
[35]
何宛余,李春,聂广洋,等.深度学习在城市感知的应用可能——基于卷积神经网络的图像判别分析[J].国际城市规划,2019,34(1):8-17.[He Wanyu, Li Chun, Nie Guangyang, et al. The latent application of deep learning in urban perception:Images discrimination analysis by convolution neural network[J]. Urban Planning International, 2019,34(1):8-17.]
[36]
邱林,郑雪,王雁飞.积极情感消极情感量表(PANAS)的修订[J].应用心理学,2008,14(3):249-254,268.[Qiu Lin, Zheng Xue, Wang Yanfei. Revision of the positive affect and negative affect scale[J]. Chinese Journal of Applied Psychology, 2008,14(3):249-254,268.]
[37]
张珍珍,李君轶.旅游形象研究中问卷调查和网络文本数据的对比——以西安旅游形象感知研究为例[J].旅游科学,2014,28(6):73-81.[Zhang Zhenzhen, Li Junyi. A comparative study on the data of a questionnaire and web texts in tourism image researches:A case study of Xi'an tourism image perception[J]. Tourism Science, 2014,28(6):73-81.]
[38]
张木子,李君轶,张高军.孰优孰劣:旅游在线调查与田野调查对比分析[J].旅游学刊,2015,30(4):95-104.[Zhang Muzi, Li Junyi, Zhang Gaojun. Which is better?A comparative analysis of tourism online survey and field survey[J]. Tourism Tribune, 2015,30(4):95-104.]
[39]
Faullant R, Matzler K, Mooradian T A. Personality, basic emotions, and satisfaction:Primary emotions in the mountaineering experience[J]. Tourism Management, 2011,32(6):1423-1430.
[40]
Verma D, Jana A, Ramamritham K. Machine-based understanding of manually collected visual and auditory datasets for urban perception studies[J/OL]. Landscape and Urban Planning, 2019,190:103604. https://doi.org/10.1016/j.landurbplan.2019.103604.