基于旅游者网络关注度的旅游景区日游客量预测研究——以不同客户端百度指数为例

孙烨, 张宏磊, 刘培学, 张捷

人文地理 ›› 2017, Vol. 32 ›› Issue (3) : 152-160.

PDF(1772 KB)
PDF(1772 KB)
人文地理 ›› 2017, Vol. 32 ›› Issue (3) : 152-160. DOI: 10.13959/j.issn.1003-2398.2017.03.020
旅游

基于旅游者网络关注度的旅游景区日游客量预测研究——以不同客户端百度指数为例

  • 孙烨, 张宏磊, 刘培学, 张捷
作者信息 +

FORECAST OF TOURISM FLOW VOLUME OF TOURISTATTRACTION BASED ON DEGREE OF TOURISTATTENTION OF TRAVEL NETWORK: A CASE STUDY OF BAIDU INDEX OF DIFFERENT CLIENTS

  • SUN Ye, ZHANG Hong-lei, LIU Pei-xue, ZHANG Jie
Author information +
文章历史 +

摘要

网络搜索引擎是旅游者获取旅游信息的最重要入口,百度指数通过反映关键词被搜索的次数表征旅游者的网络关注度。文章以三清山为例,首先利用协整理论及格兰杰因果检验分析了PC端和移动端百度指数与实际游客量之间的关系,进一步建立日游客量ARMA模型和分别加入PC 端和移动端百度指数的VAR模型,对游客量预测结果及预测能力进行比较分析,以期通过不同客户端、不同搜索关键词来填补游客量预测过程中旅游网络数据提取的单一性,得到更好的预测效果。发现移动端比PC端百度指数模型具有更好的预测效果,移动端比PC端百度指数对实际游客量的变动具有更好的解释能力。

Abstract

It is the web search engine that is an important way for tourists to get travel information. Therefore, it is easy to record behavior of tourists. Baidu Index, by searching times of relevant keywords, is able to find out the degree of tourist attention of travel network easily. With the changes of different clients, Baidu Index shows certain spatiotemporal difference and precursor effect. In order to find out the relationships between Baidu Index of PC client and mobile client and the actual visitor number of Mount Sanqingshan, paper used the econometric cointegration theory and Granger causality test. In addition, to forecast Tourism Flow Volume, the paper further establishes ARMA model of the daily visitor number of Mount Sanqingshan and VAR models which add Baidu Index of PC client or mobile client respectively. It is found that:1) There are long-term equilibrium relationships between the actual visitor number of Mount Sanqingshan and Baidu Index of PC client and mobile client of multigroup search keywords; 2) The results of variables Granger causality tests between Baidu Index of PC client and mobile client of Different search keywords and the actual visitor number of Mount Sanqingshan present significant inconsistencies; 3) Among the three prediction model, VAR model of mobile client is of the best prediction accuracy and ARMA model of the daily visitor number of Mount Sanqingshan is of the lowest prediction accuracy.

关键词

百度指数 / 协整检验 / 格兰杰因果检验 / ARMA模型 / VAR模型

Key words

Baidu Index / co-integration test / Granger causality test / ARMA model / VAR model

引用本文

导出引用
孙烨, 张宏磊, 刘培学, 张捷. 基于旅游者网络关注度的旅游景区日游客量预测研究——以不同客户端百度指数为例[J]. 人文地理. 2017, 32(3): 152-160 https://doi.org/10.13959/j.issn.1003-2398.2017.03.020
SUN Ye, ZHANG Hong-lei, LIU Pei-xue, ZHANG Jie. FORECAST OF TOURISM FLOW VOLUME OF TOURISTATTRACTION BASED ON DEGREE OF TOURISTATTENTION OF TRAVEL NETWORK: A CASE STUDY OF BAIDU INDEX OF DIFFERENT CLIENTS[J]. HUMAN GEOGRAPHY. 2017, 32(3): 152-160 https://doi.org/10.13959/j.issn.1003-2398.2017.03.020
中图分类号: F59   

参考文献

[1] Haiyan S, Gang L. Tourism demand modelling and forecasting: A review of recent research[J]. Tourism Management, 2008,29(2):203-220.

[2] Weatherford L R, Kimes S E. A comparison of forecasting methods for hotel revenue management[J]. International Journal of Forecasting, 2003,19(3):401-415.

[3] Law R, Au N. A neural network model to forecast Japanese demand for travel to Hong Kong[J]. Tourism Management, 1999,20(1):89-97.

[4] Goh C, Law R. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention[J]. Tourism Management, 2002,23(5):499-501.

[5] Chaitip P, Chaiboonsri C. Forecasting with X-12-ARIMA and ARFIMA: International tourist arrivals to India[J]. Annals of the University of Petrosani Economics, 2009,9(3):147-162.

[6] Cho V. Tourism forecasting and its relationship with leading economic indicators[J]. Journal of Hospitality & Tourism Research, 2001,25(4):399-420.

[7] Chan F, Lim C, Mcaleer M. Modelling multivariate international tourism demand and volatility[J]. Tourism Management, 2005,26(3): 459-471.

[8] 雷可为,陈瑛.基于BP神经网络和ARIMA组合模型的中国入境游 客量预测[J].旅游学刊,2007,22(4):20-25. [Lei Kewei, Chen Ying. Forecast of inbound tourists to China based on BP neural network and ARIMA combined model[J]. Tourism Tribune, 2007,22(4):20-25.]

[9] Pan B, Hembrooke H, Joachims T, et al. In Google we trust: Users' decisions on rank, position, and relevance[J]. Journal of Computer-Mediated Communication, 2007,12(3):801-823.

[10] Askitas N, Zimmermann K F. Google econometrics and unemployment forecasting[J]. Applied Economics Quarterly, 2009,55(2):107-120.

[11] Ettredge M, Gerdes J, Karuga G. Using web-based search data to predict macroeconomic statistics[J]. Communications of the ACM, 2005,48(11):87-92.

[12] Carneiro H A, Mylonakis E. Google trends: A web-based tool for real-time surveillance of disease outbreaks[J]. Clinical Infectious Diseases, 2009,49(10):1557-1564.

[13] Cooper C, Mallon K, Leadbetter S, et al. Cancer Internet search activity on a major search engine, United States 2001—2003[J]. Journal of Medical Internet Research, 2005,7(3):36.

[14] Ginsberg J, Mohebbi M H, Patel R S, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009,457(7232): 1012-1014.

[15] Dzielinski M. Measuring economic uncertainty and its impact on the stock market[J]. Finance Research Letters, 2012,9(3):167-175.

[16] Vosen S, Schmidt T. Forecasting private consumption: Surveybased indicators vs. Google trends[J]. Journal of Forecasting, 2011, 30(6):565-578.

[17] Goel S, Hofman J M, Lahaie S, et al. Predicting consumer behavior with web search[J]. Proceedings of the National Academy of Sciences, 2010,107(41):17486-17490.

[18] Mclaren N, Shanbhogue R. Using internet search data as economic indicators[J]. Bank of England Quarterly Bulletin, 2011,51(2):134-140.

[19] Hand C, Judge G. Searching for the picture: Forecasting UK cinema admissions using Google trends data[J]. Applied Economics Letters, 2012,19(11):1051-1055.

[20] Preis T, Moat H S, Stanley H E. Quantifying trading behavior in financial markets using Google trends[J]. Scientific Reports, 2013,3: 1-6.

[21] Choi H, Varian H. Predicting the present with Google trends[J]. Economic Record, 2012,88(S1):2-9.

[22] 张崇,吕本富,彭赓,等.网络搜索数据与CPI 的相关性研究[J].管理 科学学报,2012,15(7):50-59. [Zhang Chong, Lv Benfu, Peng Geng, et al. A study on correlation between web search data and CPI[J]. Journal of Management Sciences in China, 2012,15(7):50-59.]

[23] 杨欣,吕本富.突发事件、投资者关注与股市波动——来自网络搜 索数据的经验证据[J].经济管理,2014,36(2):147-158. [Yang Xin, Lv Benfu. Emergency, investor attention and stock market volatility: Evidence from web search data[J]. Economic Management Journal, 2014,36(2):147-158.]

[24] 陈涛,林杰.基于搜索引擎关注度的网络舆情时空演化比较分析 ——以谷歌趋势和百度指数比较为例[J].情报杂志,2013,32(3):7-10. [Chen Tao, Lin Jie. Comparative analysis of temporal-spatial evolution of online public opinion based on search engine attention: Cases of Google trends and Baidu index[J]. Journal of Intelligence, 2013,32(3):7-10.]

[25] 张捷,温明华,刘泽华,等.信息通信技术与旅行旅游业研究发展趋 势——国际信息技术与旅游业联盟(IFITT)11 届大会综述[J].旅 游学刊,2004,19(3):93-94. [Zhang Jie, Wen Minghua, Liu Zehua, et al. Development trend of information and communication technology and travel and tourism: Review on the 11st the international federation for IT and travel & tourism (IFITT) conference[J]. Tourism Tribune, 2004,19(3):93-94.]

[26] 张捷,刘泽华,解杼,等.中文旅游网站的空间类型及发展战略研究[J].地理科学,2004,24(4):493-499. [Zhang Jie, Liu Zehua, Xie Shu, et al. On types of the spacial distribution of Chinese tourist website[J]. Scientia Geographica Sinica, 2004,24(4):493-499.]

[27] 程绍文,张捷,梁玥琳,等.我国旅游网站空间分布及动力机制研究[J]. 旅游学刊,2009,24(2):75-80. [Cheng Shaowen, Zhang Jie, Liang Yuelin, et al. Study on the spatial disturibution and dynamic mechanism of China's tourism websites[J]. Tourism Tribune, 2009, 24(2):75-80.]

[28] 李莉,张捷.互联网信息评价对游客信息行为和出游决策的影响 研究[J].旅游学刊,2013,28(10):23-29. [Li Li, Zhang Jie. Impact of network information evaluation on tourists' information-related behavior and travel decisions[J]. Tourism Tribune, 2013,28(10):23-29.]

[29] 涂玮,金丽娇.基于网络信息关注度的大学生旅游消费决策研究[J].北京第二外国语学院学报,2012(1):63-70. [Tu Wei, Jin Lijiao. Study on college student tourism consumption decision-making based on the attention to internet information[J]. Journal of Beijing International Studies University, 2012(1):63-70.]

[30] Pan B. The power of search engine ranking for tourist destinations[J]. Tourism Management, 2015,47:79-87.

[31] Pan B, Xiang Z, Law R, et al. The dynamics of search engine marketing for tourist destinations[J]. Journal of Travel Research, 2011, 50(4):365-377.

[32] 路紫,李晓楠,杨小彦,等.基于旅游网站交互功能的访问者行为多 时间维度研究[J].经济地理,2010,30(12):2100-2103. [Lu Zi, Li Xiaonan, Yang Xiaoyan, et al. Multiple time dimensions of visitors' behavior based on the interactive function of tourism websites[J]. Economic Geography, 2010,30(12):2100-2103.]

[33] 路紫,赵亚红,吴士锋,等.旅游网站访问者行为的时间分布及导引 分析[J].地理学报,2007,62(6):621-630. [Lu Zi, Zhao Yahong, Wu Shifeng, et al. The time distribution and guide analysis of visiting behavior of tourism website user[J]. Acta Geographica Sinica, 2007,62(6):621-630.]

[34] 路紫,刘娜.澳大利亚旅游网站信息流对旅游人流的导引:过程、 强度和机理问题[J].人文地理,2007,22(5):88-93. [Lu Zi, Liu Na. The guiding effect of information flow of Australian tourism website on tourist flow: Process, intensity and mechanism[J]. Human Geography, 2007,22(5):88-93.]

[35] Davidson A P, Yu Y M. The internet and the occidental tourist: An analysis of Taiwan's tourism websites from the perspective of western tourists[J]. Information Technology & Tourism, 2005,7(2):91-102.

[36] 李山,邱荣旭,陈玲.基于百度指数的旅游景区络空间关注度:时间 分布及其前兆效应[J].地理与地理信息科学,2008,24(6):102-107.[Li Shan, Qiu Rongxu, Chen Ling. Cyberspace attention of tourist attractions based on Baidu Index: Temporal distribution and precursor effect[J]. Geography and Geo-Information Science, 2008,24(6): 102-107.]

[37] 马丽君,孙根年,黄芸玛,等.城市国内客流量与游客网络关注度时 空相关分析[J]. 经济地理,2011,31(4):680-685. [Ma Lijun, Sun Gennian, Huang Yunma, et al. A correlative analysis on the relationship between domestic tourists and network attention[J]. Economic Geography, 2011,31(4):680-685.]

[38] 龙茂兴,孙根年,马丽君,等.区域旅游网络关注度与客流量时空动 态比较分析——以四川为例[J].地域研究与开发,2011,30(3):93-97. [Long Maoxing, Sun Gennian, Ma Lijun, et al. An analysis on the variation between the degree of consumer attention of travel network and tourist flow in regional tourism: A case of Sichuan Province[J]. Areal Research and Development, 2011,30(3):93-97.]

[39] 王硕,曾克峰,童洁,等.黄金周风景名胜区旅游客流量与网络关注 度相关性分析——以庐山、华山、八达岭长城风景名胜区为例[J]. 经济地理,2013,33(11):182-186. [Wang Shuo, Zeng Kefeng, Tong Jie, et al. A correlative analysis of the relationship between tourists and tourist network attention for scenic spots in special session[J]. Economic Geography, 2013,33(11):182-186.]

[40] Gawlik E, Kabaria H, Kaur S. Predicting tourism trends with Google insights[EB/OL].(2011-12-15) [2015-12-02]. http://cs229. stanford. edu/proj2011/Gawlik Kaur-Kabaria -Predicting-Tourism Trends with Google Insights. pdf.

[41] Pan B, Wu D C, Song H. Forecasting hotel room demand using search engine data[J]. Journal of Hospitality & Tourism Technology, 2012,3(3):196-210.

[42] Yang X, Pan B, Evans J A, et al. Forecasting Chinese tourist volume with search engine data[J]. Tourism Management, 2015,46:386-397.

[43] 黄先开,张丽峰,丁于思.百度指数与旅游景区游客量的关系及预 测研究——以北京故宫为例[J].旅游学刊,2013,28(11):93-100.[Huang Xiankai, Zhang Lifeng, Ding Yusi. Study on the predictive and relationship between tourist attractions and the Baidu Index: A case study of the Forbidden City[J]. Tourism Tribune, 2013,28(11): 93-100.]

[44] 任乐,崔东佳.基于网络搜索数据的国内旅游客流量预测研究—— 以北京市国内旅游客流量为例[J].经济问题探索,2014(4):67-73.[Ren Le, Cui Dongjia. Prediction research of domestic tourist volume based on Internet search data: A case study of domestic tourist volume of Beijing[J]. Inquiry into Economic Issues, 2014(4):67-73.]

[45] 龙茂兴,孙根年,龙珍付.遵义红色旅游网络关注度的客流响应研 究[J].地理与地理信息科学,2013,29(5):98-101. [Long Maoxing, Sun Gennian, Long Zhenfu. Tourist flow's response to degree of consumer network attention to Zunyi tourism[J]. Geography and Geo-Information Science, 2013,29(5):98-101.]

[46] 林志慧,马耀峰,刘宪锋,等.旅游景区网络关注度时空分布特征分 析[J].资源科学,2012,34(12):2427-2433. [Lin Zhihui, Ma Yaofeng, Liu Xianfeng. Spatial and temporal features of network attention of scenic areas[J]. Resources Science, 2012,34(12):2427-2433.]

[47] 李嫣怡,刘荣,丁维岱.EViews 统计分析与应用修订版[M].北京:电 子工业出版社,2013:147-152,178-185,153-161,165-170,171-177.[Li Yanyi, Liu Rong, Ding Weidai. Eviews Statistical Analysis and Application (Revised Edition) [M]. Beijing: Publishing House of Electronics Industry, 2013:147-152,178-185,153-161,165-170,171-177.]

基金

国家自然科学基金项目(41301134)


PDF(1772 KB)

Accesses

Citation

Detail

段落导航
相关文章

/