URBAN TEMPORAL VIBRANCY MODE AND ITS INFLUENCING FACTORS BASED ON MOBILE SIGNALING DATA: A CASE STUDY OF NANJING, CHINA
CAO Zhong-ming1,2, ZHEN Feng1,2,, LI Zhi-xuan1,2, LOBSANG Tashi2,3
1. School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China;
2. Provincial Engineering Laboratory of Smart City Design Simulation & Visualization, Nanjing 210093, China;
3. School of Architecture and Urban Planning, Yunnan University, Kunming 650091, China
Abstract:This paper interpreted the concept of urban vibrancy on the temporal dimension using mobile signaling data. Researchers construct an evaluation index system that involves the activity intensity, mixing degree and contact strength. Based on this system, this paper summarized five temporal vibrancy modes by analyzing the vibrancy value's 24-hour daily time series clustering. Based on the indicators in the existing literature, 7 first-level indicators and 17 second-level indicators are selected from the two aspects of social economy and built environment, and multiple logistic regression model is used to investigate how influential the socioeconomic and built-environment factors are within different temporal vibrancy modes. Major conclusions indicate that: 1)The temporal vibrancy mode in the downtown area of Nanjing follows five scenarios: a. High vitality with fluctuation, b. High vitality with stability, c. Medium vitality with fluctuation, d. Medium vitality with stability and e. Low vitality with stability. 2) The spatial distribution of different temporal vibrancy modes follows specific patterns. 3) In terms of influential factors, variables including density, the population age structure, community socioeconomic status, transportation location reachability, regional planning functionality, and development intensity promote the generation of high-vitality fluctuating/stable block.
曹钟茗, 甄峰, 李智轩, 罗桑扎西. 基于手机信令数据的城市时间活力模式及影响因素研究——以南京市中心城区为例[J]. 人文地理, 2022, 37(6): 109-117.
CAO Zhong-ming, ZHEN Feng, LI Zhi-xuan, LOBSANG Tashi. URBAN TEMPORAL VIBRANCY MODE AND ITS INFLUENCING FACTORS BASED ON MOBILE SIGNALING DATA: A CASE STUDY OF NANJING, CHINA. HUMAN GEOGRAPHY, 2022, 37(6): 109-117.
王建国.包容共享、 显隐互鉴、 宜居可期——城市活力的历史图景和当代营造[J]. 城市规划,2019,43(12):9-16. [Wang Jianguo. Inclusiveness and sharing, explicit and implicit mutual learning, livability predicted: Historical prospect and contemporary creation of urban vitality[J]. Urban Planning, 2019,43(12):9-16.]
[2]
Montgomery J. Editorial Urban Vitality and the Culture of Cities [M]. New York: Taylor & Francis Group,1995:15-18.
[3]
Jacobs J. The Death and Life of Great American Cities[M]. New York: Random House, 1961:122-125.
[4]
Gehl J. Life Between Buildings[M]. Copenhagen: Danish Architectural Press, 2008:59-73.
[5]
Whyte W H. The Social Life of Small Urban Spaces[M]. New York: Project for Public Spaces, 2001:112-170.
[6]
金延杰.中国城市经济活力评价[J].地理科学,2007,1(1):9-16. [Jin Yanjie. Study on urban economic vatality index in China[J]. Scientia Geographica Sinica, 2007,1(1):9-16.]
[7]
Xia C, Yeh A G O, Zhang A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities[J/OL]. Landscape and Urban Planning, 2020,193:103669. https://www.sciencedirect.com/science/article/pii/S016920461930101X. doi:10.1016/j.landurbplan.2019.103669.
[8]
刘颂,赖思琪.大数据支持下的城市公共空间活力测度研究[J].风景园林,2019,26(5):24-28. [Liu Song, Lai Siqi. Measurement of urban public space vitality based on big data[J]. Landscape Architecture, 2019,26(5):24-28.]
[9]
黄浦江,杜凤姣.上海市中心城商业活力空间分布研究[J].地理空间信息,2018,16(8):8-11,7. [Huang Pujiang, Du Fengjiao. Research on commercial vitality spatial distribution in central city of Shanghai [J]. Geospatial Information, 2018,16(8):8-11,7.]
[10]
龙瀛. 街道城市主义——新数据环境下城市研究与规划设计的新思路[J]. 时代建筑,2016,21(2):128-132. [Long Ying. Street urbanism a new perspective for urban studies and city planning in the new data environment[J]. Time Architecture, 2016,21(2):128-132.]
[11]
Yue W, Chen Y, Thy P T M, et al. Identifying urban vitality in metropolitan areas of developing countries from a comparative perspective: Ho Chi Minh city versus Shanghai[J/OL]. Sustainable Cities and Society, 2021,65:102609. https://doi.org/10.1016/j.scs.2020.102609 Get rights and content.
[12]
Zeng C, Song Y, He Q, et al. Spatially explicit assessment on urban vitality: Case studies in Chicago and Wuhan[J]. Sustainable Cities and Society, 2018,40:296-306.
[13]
罗桑扎西,甄峰.基于手机数据的城市公共空间活力评价方法研究——以南京市公园为例[J]. 地理研究,2019,38(7):1594-1608. [Lobsang Tashi, Zhen Feng. How to evaluate public space vitality based on mobile phone data: An empirical analysis of Nanjing's parks[J]. Geographical Research, 2019,38(7):1594-1608.]
[14]
柴彦威,王恩宙.时间地理学的基本概念与表示方法[J].经济地理, 1997,3(3):55-61. [Chai Yanwei, Wang Enzhou. Basic concepts and notation of time-geography[J]. Economic Geography, 1997,3(3):55- 61.]
[15]
张雪,李彦熙,柴彦威.多情境下城市时空间行为的社会分异—— 以北京不同住房来源居民为例[J]. 人文地理,2021,36(6):39-52. [Zhang Xue, Li yanxi, Chai Yanwei. Social segregation of spatiotemporal behavior of residents of different types of housing in complex contexts: A case study of Beijing[J]. Human Geography, 2021, 36(6):39-52.]
[16]
端木一博,柴彦威.北京市就业者日常活动的时间利用研究—— 基于2007年与2017年调研数据的对比[J].人文地理,2021,36(2): 136-145. [Duanmu Yibo, Chai Yanwei. Time use research of workers' daily activities in Beijing: A comparison between 2007 and 2017[J]. Human Geography, 2021,36(2):136-145.]
[17]
闵忠荣,丁帆. 基于百度热力图的街道活力时空分布特征分析——以江西省南昌市历史城区为例[J].城市发展研究,2020,27(2): 31-36. [Min Zhongrong, Ding Fan. Analysis of temporal and spatial distribution characteristics of street vitality based on baidu thermal diagram: The case of the historical city of Nanchang city, Jiangxi province[J]. Urban Development Studies, 2020,27(2):31-36.]
[18]
王鲁帅,缪岑岑.基于手机信令数据的城市滨水区时空活力模式研究——以上海黄浦江中段为例[C]//中国城市规划学会、 沈阳市人民政府.规划60年: 成就与挑战——2016中国城市规划年会论文集(04城市规划新技术应用).中国城市规划学会、 沈阳市人民政府: 中国城市规划学会,2016:13. [Wang Lushuai, Miu Cencen. Spatial and temporal dynamism model of urban waterfront based on mobile signaling data: A case study of the middle section of Huangpu River in Shanghai[C]// Urban Planning Society of China, Shenyang Municipal People's Government. 60 Years of Planning: Achievements and Challenges: Proceedings of 2016 China Urban Planning Annual Conference (04 Application of New Technology in Urban Planning). Urban Planning Society of China, Shenyang Municipal People's Government: Urban Planning Society of China, 2016:13.]
[19]
王波,甄峰,张浩.基于签到数据的城市活动时空间动态变化及区划研究[J]. 地理科学,2015,35(2):151-160. [Wang Bo, Zhen Feng, Zhang Hao. The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina Web[J]. Scientia Geographica Sinica, 2015,35(2):151-160.]
[20]
关庆锋,任书良,姚尧,等.耦合手机信令数据和房价数据的城市不同经济水平人群行为活动模式研究[J].地球信息科学学报,2020, 22(1):100-112. [Guan Qingfeng, Ren Shuliang, Yao Yao, et al. Revealing the behavioral patterns of different socioeconomic groups in cities with mobile phone data and house price data[J]. Journal of Geo-information Science, 2020,22(1):100-112.]
[21]
Meng Y, Xing H. Exploring the relationship between landscape characteristics and urban vibrancy: A case study using morphology and review data[J]. Cities, 2019,3(1):93-116.
[22]
Zarin S Z, Niroomand M, Heidari A A. Physical and social aspects of vitality case study: Traditional street and modern street in Tehran [J]. Procedia Social and Behavioral Sciences, 2015,170:659-668.
[23]
Lu S, Huang Y, Shi C, et al. Exploring the associations between urban form and neighborhood vibrancy: A case study of Chengdu, China[J]. ISPRS International Journal of Geo-Information, 2019, 8(4):165-180.
[24]
李康康,杨东峰.城市建成环境如何影响老年人体力活动——模型构建与大连实证[J]. 人文地理,2021,36(5):111-120. [Li Kangkang, Yang Dongfeng. How does the urban built environment affect the physical activities of the elderly: Model construction and Dalian demonstration[J]. Human Geography, 2021,36(5):111-120.]
[25]
塔娜,曾屿恬,朱秋宇,等.基于大数据的上海中心城区建成环境与城市活力的关系分析[J]. 地理科学,2020,40(1):60-68. [Ta Na, Zeng Yutian, Zhu Qiuyu, et al. Relationship between built environment and urban vitality in Shanghai downtown area based on big data[J]. Scientia Geographica Sinica, 2020,40(1):60-68.]
[26]
钮心毅,吴莞姝,李萌.基于LBS定位数据的建成环境对街道活力的影响及其时空特征研究[J]. 国际城市规划,2019,34(1):28-37. [Niu Xinyi, Wu Wanshu, Li Meng. Influence of built environment on street vitality and its spatiotemporal characteristics based on LBS positioning data[J]. Urban Planning International, 2019,34(1): 28-37.]
[27]
Wu C, Ye X, Ren F, et al. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China[J]. Cities, 2018,77:104-116.
[28]
Csáji B C, Browet A, Traag V A et al. Exploring the mobility of mobile phone users[J]. Physica A: Statistical Mechanics and its Applications, 2013,392(6):1459-1473.
[29]
钟炜菁,王德,谢栋灿,等.上海市人口分布与空间活动的动态特征研究: 基于手机信令数据的探索[J]. 地理研究,2017,36(5):972- 984. [Zhong Weijing, Wang De, Xie Dongcan, et al. Study on dynamic characteristics of population distribution and spatial activity in Shanghai: Exploration based on mobile signaling data[J]. Geographical Research, 2017,36(5):972-984.]
[30]
Yue Y, Zhuang Y, Yeh A G O, et al. Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy[J]. International Journal of Geographical Information Science, 2017,31(4):658-675.
[31]
Shen L, Stopher P R. A process for trip purpose imputation from global positioning system data[J]. Transportation Research Part C, 2013,36(c):261-267.
[32]
赵构恒,贾鹏,周安民.有向加权网络中的改进度中心性[J].计算机应用,2020,40(S1):141-145. [Zhao Gouheng, Jia Peng, Zhou Anming. Improved degree centrality for directed-weighted network[J]. Journal of Computer Applications, 2020,40(S1):141-145.]
[33]
Charu C. Aggarwal. Outlier Analysis[M]. London: Springer, 2016: 23-39.
[34]
阿龙多琪,马航,杨彪.2000年以来我国公共空间活力研究进展[J]. 现代城市研究,2020(10):123-130. [A Longduoqi, Ma Hang, Yang Biao. Research progress on the public space vitality in China since 2000[J]. Modern Urban Research, 2020(10):123-130.]
[35]
唐璐,许捍卫,丁彦文.融合多源地理大数据的城市街区综合活力评价[J].地球信息科学学报,2022,24(8):1575-1588. http://kns.cnki.net/kcms/detail/11.5809.P.20210928.1338.004.html. [Tang Lu, Xu Hanwei, Ding Yanwen. Comprehensive vitality evaluation of urban blocks based on multi-source geographic big data[J/OL]. Journal of Geo-information Science, 2022,24(8):1575-1588.]
[36]
刘云舒,赵鹏军,梁进社.基于位置服务数据的城市活力研究—— 以北京市六环内区域为例[J].地域研究与开发,2018,37(6):64-69, 87. [Liu Yunshu, Zhao Pengjun, Liang Jinshe. Study on urban vitality based on LBS data: A case of Beijing within 6th ring road[J]. Areal Research and Development, 2018,37(6):64-69,87.]
[37]
秦萧,甄峰. 大数据与小数据结合: 信息时代城市研究方法探讨[J]. 地理科学,2017,37(3):321-330. [Qin Xiao, Zhen Feng. Combination between big data and small data: New methods of urban studies in the information era[J]. Scientia Geographica Sinica, 2017, 37(3):321-330.]