风险视角下的城市聚落形成模拟

韩昊英, 舒贤帆, 赖世刚

人文地理 ›› 2017, Vol. 32 ›› Issue (4) : 60-67,154.

PDF(3118 KB)
PDF(3118 KB)
人文地理 ›› 2017, Vol. 32 ›› Issue (4) : 60-67,154. DOI: 10.13959/j.issn.1003-2398.2017.04.009
城市

风险视角下的城市聚落形成模拟

  • 韩昊英1, 舒贤帆2, 赖世刚3
作者信息 +

SIMULATING THE FORMATION OF URBAN SETTLEMENT SYSTEMS WITH THE CONSIDERATION OF RISK ATTITUDES

  • HAN Hao-ying1, SHU Xian-fan2, LAI Shih-Kung3
Author information +
文章历史 +

摘要

幂次法则是普遍存在于自然科学和社会科学界的现象,而城市位序-规模法则是幂次法则在城市科学中的体现之一,然而特定城市规模分布一直缺乏完整的解释。本文尝试结合城市增长过程中土地开发行为的报酬递增规则与土地开发主体的风险认知行为,以城市增长的微观过程为切入视角模拟宏观城市聚落演化过程,进而探讨风险态度对城市聚落形态,尤其是对其规模分布的影响。研究结果表明:①即使城市聚落演化过程中存在多种风险态度,幂次法则在城市聚落的规模分布中仍保持着稳健性; ②现实世界中城市聚落规模分布的变异和稳定可能来自城市主体风险态度的多样性。

Abstract

The power law is a phenomenon that can be widely observed in both natural and social environments, and rank-size rule of urban scale is an instance for the power law in urban science. This paper tries to integrate the increasing returns of land development and the risk perception of land developers into an urban growth model, which simulates the macroevolution of urban settlement systems based on microcosmic growth of single cities, and further reveal how risk attitudes of land developers affect the pattern, especially the size distribution of urban settlement systems. With the attraction effect controlled, the relationship between certain combination of risk attitudes and the size distribution of the generated urban settlement system can be explored. There are totally 76 treatments compared in our simulating experiment, consisting of 56 single-attitude treatments and 20 multi-attitudes treatments. The results suggest that:1) the power law is pervasive in the size distributions of urban settlement systems regardless of land developers' various risk attitudes, indicating the robustness of this law, 2) the size distributions of urban settlement systems with different risk attitudes differ drastically from one another with regard to the degree of uniformity, probably corresponding to urban settlement systems with different endowment or at different stages in the real world, and 3) a phenomenon of "convergence" can be widely observed in multi-attitudes scenarios, implying cities with medium and small size may play an important role in the constancy of rank size distribution of urban settlement systems in real world.

关键词

风险态度 / 城市聚落 / 规模分布 / 幂次法则

Key words

risk attitudes / urban settlement systems / size distribution / power law

引用本文

导出引用
韩昊英, 舒贤帆, 赖世刚. 风险视角下的城市聚落形成模拟[J]. 人文地理. 2017, 32(4): 60-67,154 https://doi.org/10.13959/j.issn.1003-2398.2017.04.009
HAN Hao-ying, SHU Xian-fan, LAI Shih-Kung. SIMULATING THE FORMATION OF URBAN SETTLEMENT SYSTEMS WITH THE CONSIDERATION OF RISK ATTITUDES[J]. HUMAN GEOGRAPHY. 2017, 32(4): 60-67,154 https://doi.org/10.13959/j.issn.1003-2398.2017.04.009
中图分类号: K901.8   

参考文献

[1] Zipf G K. Human Behavior and the Principle of Least Effort[M]. Cambridge, Massachusetts:Addison-Wesley Press, 1949:416-444.

[2] Carroll G R. National city-size distributions:What do we know after 67 years of research[J]. Progress in Human Geography, 1982,6(1):1-43.

[3] 许学强,周一星,宁越敏.城市地理学[M].北京:高等教育出版社, 2009:163-190.[Xu Xueqiang, Zhou Yixing, Ning Yueming. Urban Geography[M]. Beijing:Higher Education Press, 2009:163-190.]

[4] 陈彦光,刘继生.城市规模分布的分形和分维[J].人文地理,1999,14(2):48-53.[Chen Yanguang, Liu Jisheng. Fractals and fractal dimensions of city-size distributions[J]. Human Geography, 1999,14(2):48-53.]

[5] Vapnarsky C A. On rank-size distributions of cities:An ecological approach[J]. Economic Development and Cultural Change, 1969,17(4):584-595.

[6] Krugman P. The Self-organizing Economy[M]. Cambridge, Massachusetts:Blackwell Publishers Inc, 1996:39-46.

[7] Ioannides Y M, Overman H G. Zipf's law for cities:An empirical examination[J]. Regional Science and Urban Economics, 2003,33(2):127-137.

[8] Batty M. Rank clocks[J]. Nature, 2006,444(7119):592-596.

[9] Kinoshita T, Kato E, Iwao K, et al. Investigating the rank size relationship of urban areas using land cover maps[J]. Geophysical Research Letters, 2008,35(17):405-408.

[10] 顾朝林,于涛方,李王鸣.中国城市化:格局·过程·机理[M].北京:科学出版社,2008:693-697.[Gu Chaolin, Yu Taofang, Li Wangming. China's Urbanization:Pattern, Process and Mechanism[M]. Beijing:Science Press, 2008:693-697.]

[11] Jiang B, Yin J, Liu Q. Zipf's law for all the natural cities around the world[J]. International Journal of Geographical Information Science, 2015, 29(3):498-522.

[12] Mehta S K. Some demographic and economic correlates of primate cities:A case for revaluation[J]. Demography, 1964,1(1):136-147.

[13] Rosen K T, Resnick M. The size distribution of cities:An examination of the Pareto law and primacy[J]. Journal of Urban Economics, 1980,8(2):165-186.

[14] Mandelbrot B B. The Fractal Geometry of Nature[M]. New York:W. H. Freeman and Company, 1983:109-390.

[15] 陈勇,陈嵘,艾南山,等.城市规模分布的分形研究[J].经济地理, 1993,13(3):48-53.[Chen Yong, Chen Rong, Ai Nanshan. Fractals of city size distribution[J]. Economic Geography, 1993,13(3):48-53.]

[16] 陈彦光.中国城市发展的自组织特征与判据——为什么说所有城市都是自组织的?[J]. 城市规划,2006,30(8):24-30.[Chen Yanguang. Self-organized characteristics and criteria of the development of Chinese cities[J]. Urban Planning, 2006,30(8):24-30.]

[17] 陈彦光,刘继生.Davis二倍数规律与Zipf三参数模型的等价性证明——关于城市规模分布法则的一个理论探讨[J].地理科学进展,1999,18(3):255-262.[Chen Yanguang, Liu Jisheng. A proof of Daivs' 2n-law as a special equivalent of the three-parameter Zipf model[J]. Progress in Geography, 1999,18(3):255-262.]

[18] Chen Y. The evolution of Zipf's law indicative of city development[J]. Physica A-Statistical Mechanics and Its Application, 2016,443:555-567.

[19] Gabaix X, Ioannides Y M. The evolution of city size distributions[M/OL]//Henderson V, Thisse J F (eds). Handbook of Regional and Urban Economics, Volumn 4:Cities and Geography. Amsterdam, The Netherlands:ELSEVIER Inc., 2004:2341-2378.[2017-07-21]. http://www.sciencedirect.com/science/handbooks/15740080/4.

[20] 沈体雁,劳昕.国外城市规模分布研究进展及理论前瞻——基于齐普夫定律的分析[J].世界经济文汇,2012(4):95-111.[Shen Tiyan, Lao Xin. Research progress and theoretical prospect of the size distribution of foreign cities:Based on analysis of Zipf's law[J]. World Economic Papers, 2012(4):95-111.]

[21] Gabaix X. Zipf's law for cities:An explanation[J]. Quarterly Journal of Economics, 1999,114(3):739-768.

[22] Richardson H W. The Economics of Urban Size[M]. Farnborough:Saxon House, 1975:1-243.

[23] Vining R. A description of certain spatial aspects of an economic system[J]. Economic Development and Cultural Change, 1955,3(2):147-195.

[24] Fujita M, Krugman P R, Venables A J. The Spatial Economy:Cities, Regions, and International Trade[M]. Cambridge, Massachusetts:MIT Press, 2001:1-236.

[25] Krugman P. Confronting the mystery of urban hierarchy[J]. Journal of the Japanese and International Economies, 1996,10(4):399-418.

[26] Duranton G. City size distribution as a consequence of the growth process[EB/OL]. CEPR discussion paper no. 3577. (2002-10-07)[2017-03-10]. http://eprints.lse.ac.uk/20065/1/city_size_distributions_as_a_consequence_of_the_growth_process.pdf.

[27] Gibrat R. Les inégalités économiques[M]. Paris:Recueil Sirey, 1931:1-296.

[28] Simon H A. On a class of skew distribution functions[J]. Biometrika, 1955,44(3):425-440.

[29] Batty M. The emergence of cities:Complexity and urban dynamics[EB/OL]. (2003-05-29)[2017-03-10]. CASA working paper series. http://discovery.ucl.ac.uk/231/1/paper64.pdf.

[30] 赖世刚,韩昊英.复杂:城市规划的新观点[M].北京:中国建筑工业出版社,2009:101-118.[Lai Shih-Kung, Han Haoying. Complexity:The New Perspective of Urban Planning[M]. Beijing:China Architecture & Building Press, 2009:101-118.]

[31] 赖世刚,韩昊英,于如陵,等.都市聚落系统的形成规律——递增报酬与幂次法则的计算机与数理仿真[J].地理学报,2010,65(8):961-972.[Lai Shih-Kung, Han Haoying, Yu Ruling, et al. The formation of urban settlement systems:Computer experiments and mathematical proofs of the increasing returns approach to power law[J]. Acta Geographica Sinica, 2010,65(8):961-972.]

[32] 赖世刚,韩昊英,吴次芳.行为规划理论刍议[J].浙江大学学报(人文社会科学版), 2009,40(2):89-97.[Lai Shih-Kung, Han Haoying, Wu Cifang. A preliminary treatise on behavioral planning theory[J]. Journal of Zhejiang University (Humanities and Social Science), 2009,40(2):89-97.]

[33] Neumann L J, Morgenstern O. Theory of Games and Economic Behavior[M]. Princeton, New Jersey:Princeton University Press, 1955:8-30.

[34] Savage L J. The Foundation of Statistics[M]. New York:Dover Publications, 1972:1-91.

[35] Kahneman D, Tversky A. Prospect theory:An analysis of decision under risk[J]. Econometrica:Journal of the Econometric Society, 1979,47(2):263-292.

[36] 边慎,蔡志杰.期望效用理论与前景理论的一致性[J].经济学(季刊),2005,5(1):265-276.[Bian Shen, Cai Zhijie. Consistency of the prospect theory and the expected utility theory[J]. China Economic Quarterly, 2005,5(1):265-276.]

[37] Mohamed R. The psychology of residential developers lessons from behavioral economics and additional explanations for satisficing[J]. Journal of Planning Education and Research, 2006,26(1):28-37.

[38] 谈明洪,吕昌河.以建成区面积表征的中国城市规模分布[J].地理学报,2003,58(2):285-293.[Tan Minghong, Lu Changhe. Distribution of China city size expressed by urban built-up area[J]. Acta Geograohica Sinica, 2003,58(2):285-292.]

[39] 陈彦光.分形城市系统的空间复杂性研究[D].北京:北京大学, 2004:86-90.[Chen Yanguang. Studies on Spatial Complexity of Fractal Urban Systems[D]. Beijing:Beijing University, 2004:86-90.]

[40] Lee Y. An allometric analysis of the U.S. urban system:1960-80[J]. Environment & Planning A, 1989,21(4):463-476.

[41] 陈彦光.城市人口-城区面积异速生长模型的理论基础、推广形式及其实证分析[J].华中师范大学学报(自然科学版),2002,36(3):375-380.[Chen Yanguang. The allometric models on the relationships between area and population of urban systems-underlying rationale, generalized equation, and empirical analyses[J]. Journal of Central China Normal University (Nat. Sci.), 2002,36(3):375-380.]

[42] Chen Y, Zhou Y. Scaling laws and indications of self-organized criticality in urban systems[J]. Chaos Solitons & Fractals, 2008,35(1):85-98.

[43] Kosmopoulou G, Buttry N, Johnson J, et al. Suburbanization and the rank-size rule[J]. Applied Economics Letters, 2007,14(1):1-4.

[44] Spradlin T. A lexicon of decision making[EB/OL]. (2004-03-05)[2017-03-10]. http://dssresources.com/papers/features/spradlin/spradlin03052004.html.

[45] Kuznar L A. Frederick W G. Environmental constraints and sigmoid utility:implications for value, risk sensitivity, and social status[J]. Ecological Economics, 2003,46(2):293-306.

[46] Ligmann-Zielinska A. The impact of risk-taking attitudes on a land use pattern:An agent-based model of residential development[J]. Journal of Land Use Science, 2009,4(4):215-232.

[47] Evans T P, Kelley H, Sun W. Spatially explicit experiments for the exploration of land-use decision-making dynamics[J]. International Journal of Geographical Information Science, 2006,20(9):1013-1037.

[48] Kemeny J G, Thompson G L. The effect of psychological attitudes on the outcomes of games[J]. Annals of Mathematics Studies, 2016, 39:273-298.

[49] Kirkwood C W. Notes on attitudes towards risk taking and the exponential utility function[EB/OL]. (1997-01)[2014-09-12]. http://www.public.asu.edu/~kirkwood/DAStuff/refs/risk.htm.

基金

国家自然科学基金项目(51278526);浙江省之江青年计划项目(11ZJQN029YB)


PDF(3118 KB)

Accesses

Citation

Detail

段落导航
相关文章

/