Abstract:This paper makes a relatively comprehensive review of the mobile positioning data-based method innovation and geographical applications of Rein Ahas, a professor of human geography at Tartu University in Estonia. With the rapid development of information and communication technology as well as the largescale usage of mobile phones, mobile positioning data has shown obvious advantages over the conventional data sources like travel diaries, questionnaires, accommodation statistics and census. It has been proved that mobile positioning data can be collected for a much bigger sample of people, a longer period of time and a larger study area, so as to break through the limited spatiotemporal framework. In addition, mobile positioning data can be massive, objective, real-time, accurate and electronically coded, which helps facilitate researchers and urban planners to discover the patterns and laws of human space-time behavior in the daily life. Rein Ahas is one of the first scholars in the world to use mobile positioning data to carry out researches on human space-time behavior. He's also the leader in this field. His researches are experimental and pioneering, showing the valuable exploration made by the international academy in the early stage of understanding and using mobile positioning data. Rein Ahas formally put forward the Social Positioning Method (SPM) in 2005, which provides a new research paradigm for human space- time behavior. Using SPM as the main method, using passive mobile positioning data as the main data source and using geographic visualization as the main analysis technology, Rein Ahas kept participating in the diversified fields of tourism, commuting, transportation, ethnic segregation and smart city.
陈晓雪, 冯健. Rein Ahas基于手机定位数据的方法创新与地理研究[J]. 人文地理, 2021, 36(5): 44-52.
CHEN Xiao-xue, FENG Jian. THE METHOD INNOVATION AND GEOGRAPHICAL APPLICATIONS OF MOBILE POSITIONING DATA: A REVIEW OF RESEARCHES FROM REIN AHAS. HUMAN GEOGRAPHY, 2021, 36(5): 44-52.
柴彦威,赵莹,马修军,等.基于移动定位的行为数据采集与地理应用研究[J].地域研究与开发,2010,29(6):1-7.[Chai Yanwei, Zhao Ying, Ma xiujun, et al. Mobile positioning method for spatial-temporal behavior data collection and its geographical applications[J]. Area Research and Development, 2010,29(6):1-7.]
[2]
曹劲舟,涂伟,李清泉,等.基于大规模手机定位数据的群体活动时空特征研究[J].地球信息科学学报,2017,19(4):467-474.[Cao Jinzhou, Tu Wei, Li Qingquan, et al. Spatio-temporal analysis of aggregated human activities based on massive mobile phone tracking data[J]. Journal of Geo-information Science, 2017,19(4):467-474.]
[3]
郭璨,甄峰,朱寿佳,等.智能手机定位数据应用于城市研究的进展与展望[J].人文地理,2014,29(6):18-23.[Guo Can, Zhen Feng, Zhu Shoujia. Progress and prospect of the application of smart phone LBS data in urban researches[J]. Human Geography, 2014,29(6):18-23.]
[4]
黄潇婷,柴彦威,赵莹,等.手机移动数据作为新数据源在旅游者研究中的应用探析[J].旅游学刊,2010,25(8):39-45.[Huang Xiaoting, Chai Yanwei, Zhao Ying, et al. The application analysis of mobile data source in the study of tourists[J]. Tourism Tribune, 2010,25(8):39-45.]
[5]
许宁,尹凌,胡金星.从大规模短期规则采样的手机定位数据中识别居民职住地[J].武汉大学学报(信息科学版),2014,39(6):750-756.[Xu Ning, Yin Ling, Hu Jinxing. Identifying home-work locations from short-term, large-scale and regularly sampled mobile phone tracking data[J]. Geomatics and Information Sciences of Wuhan University, 2014,39(6):750-756.]
[6]
吴昊,刘凌波.基于手机定位数据的城市居民时空行为特征研究[J].城市建筑,2018(5):81-83.[Wu Hao, Liu Lingbo. Study on characteristics of space-time behavior of urban residents based on mobile phone location data[J]. Urbanism and Architecture, 2018(5):81-83.]
[7]
王波,甄峰,张浩.基于签到数据的城市活动时空间动态变化及区划研究[J].地理科学,2015,35(2):151-160.[Wang Bo, Zhen Feng, Zhang Hao. The dynamic changes of urban space-time activity and activity zoning based on check-in data in sina web[J]. Scientia Geographica Sinica, 2015,35(2):151-160.]
[8]
罗桑扎西,甄峰.基于手机数据的城市公共空间活力评价方法研究——以南京市公园为例[J].地理研究,2019,38(7):1594-1608.[Luo Sangzhaxi, Zhen Feng. How to evaluate public space vitality based on mobile phone data:An empirical analysis of Nanjing's parks[J]. Geographical Research, 2019,38(7):1594-1608.]
[9]
张逸姬,甄峰,罗桑扎西,等.基于多源数据的城市职住空间匹配及影响因素研究[J]. 规划师,2019,35(7):84-89.[Zhang Yiji, Zhen Feng, Luo Sangzhaxi, et al. Urban working-housing balance and influencing factors based on multi-source data[J]. Planners, 2019, 35(7):84-89.]
[10]
翟青,甄峰.移动信息技术影响下的城市空间结构研究进展[J].人文地理,2012,27(6):50-55,129.[Zhai Qing, Zhen Feng. Review on urban spatial structure research influenced by mobile information and communication technology[J]. Human Geography, 2012,27(6):50-55,129.]
[11]
甄峰,张姗琪,秦萧,等.从信息化赋能到综合赋能:智慧国土空间规划思路探索[J]. 自然资源学报,2019,34(10):2060-2072.[Zhen Feng, Zhang Shanqi, Qin Xiao, et al. From informational empowerment to comprehensive empowerment:Exploring the ideas of smart territorial spatial planning[J]. Journal of Natural Resources, 2019,34(10):2060-2072.]
[12]
曹阳,甄峰,席广亮.大数据支撑的智慧化城市治理:国际经验与中国策略[J]. 国际城市规划,2019,34(3):71-77.[Cao Yang, Zhen Feng, Xi Guangliang. The intelligent urban governance based on big data:International experience and China strategy[J]. Urban Planning International, 2019,34(3):71-77.]
[13]
付凌峰,秦维,吴子啸.手机通讯数据在城市规划中的应用[J].城市规划通讯,2016(10):15-16.[Fu Lingfeng, Qin Wei, Wu Zixiao. Application of mobile communication data in urban planning[J]. Urban Planning Newsreport, 2016(10):15-16.]
[14]
陈宇,陈燕萍,沙海涛,等.手机定位数据在城市规划基础调查中的适用性研究——以深圳市高新园区为例[J].城市发展研究,2017, 24(8):27-34.[Chen Yu, Chen Yanping, Sha Haitao, et al. The applicability of mobile positioning data in urban planning survey:A case study of Shenzhen high-tech park[J]. Urban Development Studies, 2017,24(8):27-34.]
[15]
Ahas R, Mark U. Location based services-New challenges for planning and public administration[J]. Futures, 2005,37(6):547-561.
[16]
Ahas R, Aasa A, Roose A, et al. Evaluating passive mobile positioning data for tourism surveys:An Estonian case study[J]. Tourism Management, 2008,29(3):469-486.
[17]
Ahas R, Aasa A, Silm S, et al. Mobile positioning in space-time behavior studies:Social positioning method experiments in Estonia[J]. Cartography and Geographic Information Science, 2007,34(4):259-273.
[18]
Ahas R, Aasa A, Mark U, et al. Seasonal tourism spaces in Estonia:Case study with mobile positioning data[J]. Tourism Management, 2007,28(3):898-910.
[19]
Ahas R, Silm S, Jarv O, et al. Using mobile positioning data to model locations meaningful to users of mobile phones[J]. Journal of Urban Technology, 2010,17(1):3-27.
[20]
Tiru M, Saluveer R, Ahas R, et al. The positum barometer:A webbased tool for monitoring the mobility of tourists[J]. Journal of Urban Technology, 2010,17(1):71-89.
[21]
Golledge R G,Stimson R J.空间行为的地理学[M].柴彦威,曹小曙, 龙韬,等,译.北京:商务印书馆,2013:238-264.[Golledge R G, Stimson R J. Spatial Behavior:A Geographical Perspective[M]. Chai Yanwei, Cao Xiaoshu, Long Tao, et al. Trans. Beijing:The Commercial Press, 2013:238-264.]
[22]
Silm S, Ahas R. Ethnic differences in activity spaces:A study of out-of-home nonemployment activities with mobile phone data[J]. Annals of the Association of American Geographers, 2014,104(3):542-559.
[23]
Järv O, Müürisepp K, Ahas R et al. Ethnic differences in activity spaces as a characteristic of segregation:A study based on mobile phone usage in Tallinn, Estonia[J]. Urban Studies, 2015,52(14):2680-2698.
[24]
Dijst M. Two-earner families and their action spaces:A case study of two dutch communities[J]. GeoJournal, 1999,48(3):195-206.
[25]
秦萧,甄峰,熊丽芳,等.大数据时代城市时空间行为研究方法[J].地理科学进展,2013,32(9):1352-1361.[Qin Xiao, Zhen Feng, Xiong Lifang, et al. Methods in urban temporal and spatial behavior research in the big data era[J]. Progress in Geography, 2013,32(9):1352-1361.]
[26]
Raun J, Ahas R, Tiru M. Measuring tourism destinations using mobile tracking data[J]. Tourism Management, 2016,57:202-212.
[27]
Ahas R, Aasa A, Silm S, et al. Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area:Case study with mobile positioning data[J]. Transportation Research Part C:Emerging Technologies, 2010,18(1):45-54.
[28]
Jarv O, Ahas R, Saluveer E, et al. Mobile phones in a traffic flow:A geographical perspective to evening rush hour traffic analysis using call detail records[J]. Plos One, 2012,7(11):1-11.
[29]
Silm S, Ahas R. Ethnic differences in activity spaces:A study of out-of-home nonemployment activities with mobile phone data[J]. Annals of the Association of American Geographers, 2014,104(3):542-559.
[30]
Silm S, Ahas R. The temporal variation of ethnic segregation in a city:Evidence from a mobile phone use dataset[J]. Social Science Research, 2014,47:30-43.
[31]
Mooses V, Silm S, Ahas R. Ethnic segregation during public and national holidays:A study using mobile phone data[J]. Geografiska Annaler:Series B, Human Geography, 2016,98(3):205-219.
[32]
Silm S, Ahas R, Mooses V. Are younger age groups less segregated? Measuring ethnic segregation in activity spaces using mobile phone data[J]. Journal of Ethnic and Migration Studies, 2018, 44(11):1797-1817.
[33]
Ahas R, Aasa A, Yuan Y, et al. Everyday space-time geographies:Using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn[J]. International Journal of Geographical Information Science, 2015,29(11):2017-2039.
[34]
Sorokin P A, Merton R K. Social time:A methodological and functional analysis[J]. American Journal of Sociology, 1937,42(5):615-629.
[35]
申悦,柴彦威.基于日常活动空间的社会空间分异研究进展[J].地理科学进展,2018,37(6):853-862.[Shen Yue, Chai Yanwei. Progress of research on sociospatial differentiation based on daily activity space of urban residents[J]. Progress in Geography, 2018,37(6):853-862.]