SPATIAL DISTRIBUTION AND INFLUENCING MECHANISM OF LONG-TERM APARTMENTS: A CASE STUDY OF SHENZHEN
YANG Gao1, JIN Wan-fu1, LIN Hao-yu1, LUO Ren-ze2, ZHOU Chun-shan3
1. School of Cultural Tourism and Geography, Guangdong University of Finance and Economics, Guangzhou 510320, China;
2. China Academy of Urban Planning and Design Shenzhen, Shenzhen 518040, China;
3. School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
Abstract:As an emerging form of housing market, long-term apartment is an important guarantee for implementing the national housing policy of "rent and purchase simultaneously". Taking Shenzhen as an example, based on the data of long-term apartments, population, supporting service facilities and semi-structured interviews, this paper focuses on the spatial distribution and influencing mechanism of long-term apartments through kernel density, nearest neighbor distance, spatial autocorrelation, multiple regression and geographical weighted regression. The findings are as follows: 1) The spatial distribution of long-term apartments in Shenzhen shows the characteristics of spatial agglomeration, distance attenuation and type differentiation. 2) The spatial distribution of long-term apartments in Shenzhen is affected by traffic, location, population, industrial parks and land rent. Furthermore, the influence of the subway station gradually decreases from east to west, the influence of the supermarket mall gradually decreases from west to east, and the influence of population gradually decreases from north to south. 3) Finally, using land rent theory and new consumer theory, from the perspective of supply and demand, combined with three different types of economic zones in Shenzhen and five influencing factors in spatial distribution, this paper constructs the influencing mechanism of the spatial distribution of long-term apartments in Shenzhen.
杨高, 金万富, 林浩玉, 罗仁泽, 周春山. 城市长租公寓的空间布局与影响机制实证研究——以深圳为例[J]. 人文地理, 2023, 38(1): 108-117.
YANG Gao, JIN Wan-fu, LIN Hao-yu, LUO Ren-ze, ZHOU Chun-shan. SPATIAL DISTRIBUTION AND INFLUENCING MECHANISM OF LONG-TERM APARTMENTS: A CASE STUDY OF SHENZHEN. HUMAN GEOGRAPHY, 2023, 38(1): 108-117.
唐琳,冯长春,肖亮,等.北京市居民租赁住房可支付能力及空间分异研究[J]. 人文地理,2019,34(3):91-98.[Tang Lin, Feng Changchun, Xiao Liang, et al. Research on the affordability of rental housing in Beijing[J]. Human Geography, 2019,34(3):91-98.]
[2]
Liu R, Li T, Greene R. Migration and inequality in rental housing:Affordability stress in the Chinese cities[J]. Applied Geography, 2020,115. https://doi.org/10.1016/j.apgeog.2019.102138.
[3]
陈秋竹,邓若翰.长租公寓"租金贷":问题检视、成因探析及规制路径[J]. 南方金融,2019(4):91-98.[Chen Qiuzhu, Deng Ruohan. "Rent loan" of the long-term apartment:Problem inspection, cause analysis and regulatory path[J]. South China Finance, 2019(4):91-98.]
[4]
程晗蓓,刘于琪,田明,等". 居住不稳定性" 对中国大城市流动人口健康的影响研究[J]. 地理研究,2021,40(1):185-198.[Cheng Hanbei, Liu Yuqi, Tian Ming, et al. The effects of residential instability on migrants' health in urban China[J]. Geographical Research, 2021, 40(1):185-198.]
[5]
Chen J, Wu F, Lu T. The financialization of rental housing in China:A case study of the asset-light financing model of long-term apartment rental[J]. Land Use Policy, 2021,112. https://doi.org/10.1016/j.landusepol.2021.105442.
[6]
喻燕.长租公寓租赁价格特征因素及其重要性研究——以深圳市600家长租公寓为例[J].理论月刊,2020(10):73-79.[Yu Yan. Study on the characteristic factors and importance of long-term apartment rental price:A case study of 600 parents renting apartments in Shenzhen[J]. Theory Monthly, 2020(10):73-79.]
[7]
杨高,刘柳颖,周春山.广州长租公寓租赁意向的影响机制——基于计划行为理论的扎根研究[J]. 热带地理,2021,41(3):562-572.[Yang Gao, Liu Liuying, Zhou Chunshan. The influencing mechanism for long-term apartment rental intention in Guangzhou:A ground-based study based on the theory of planned behavior[J]. Tropical Geography, 2021,41(3):562-572.]
[8]
Shoval N, Cohen-Hattab K. Urban hotel development patterns in the face of political shifts[J]. Annals of Tourism Research, 2001,28(4):908-925.
[9]
Chou T Y, Hsu C L, Chen M C. A fuzzy multi-criteria decision model for international tourist hotels location selection[J]. International Journal of Hospitality Management, 2008,27(2):293-301.
[10]
Gutiérrez J, García-Palomares J C, Romanillos G, et al. The eruption of Airbnb in tourist cities:Comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona[J]. Tourism Management, 2017,62:278-291.
[11]
Wall G, Dudycha D, Hutchinson J. Point pattern analyses of accommodation in Toronto[J]. Annals of Tourism Research, 1985,4(12):603-618.
[12]
Rogerson J M. Reconfiguring South Africa's hotel industry 1990-2010:Structure, segmentation, and spatial transformation[J]. Applied Geography, 2013,36:59-68.
[13]
Heo C Y, Blal I, Choi M. What is happening in Paris? Airbnb, hotels, and the Parisian market:A case study[J]. Tourism Management, 2017,70:78-88.
[14]
Yang Y, Mao Z. Location advantages of lodging properties:A comparison between hotels and Airbnb units in an urban environment[J]. Annals of Tourism Research, 2020,81. https://doi.org/10.1016/j.annals.2020.102861.
[15]
Ashworth G J, Tunbridge J E. The Tourist Historic City[M]. London:Belhaven Press, 1990:14-35.
[16]
Shoval N. The geography of hotels in cities:An empirical validation of a forgotten model[J]. Tourism Geographies, 2006,8(1):56-75.
[17]
Baum J A C, Haveman H A. Love thy neighbor? Differentiation and agglomeration in the Manhattan hotel industry, 1898-1990[J]. Administrative Science Quarterly, 1997,42(2):304-338.
[18]
Cheng M M, Carmel F. Algorithmic management:The case of Airbnb[J]. International Journal of Hospitality Management, 2019, 83:33-36.
[19]
Egan D J. Towards a theory of intraurban hotel location[J]. Urban Studies, 2000,37(3):611-621.
[20]
Arbel A. Some determinants of urban hotel location:The tourists' inclinations[J]. Journal of Travel Research, 1977,15(3):18-22.
[21]
Noam S, Cohen-Hattab K. Urban hotel development patterns in the face of political shifts[J]. Annals of Tourism Research, 2001,28(4):908-925.
[22]
文吉. 中国星级酒店空间布局研究[J]. 商业研究,2004(21):154-159.[Wen Ji. On Chinese star-hotel spatial distribution[J]. Commercial Research, 2004(21):154-159.]
[23]
梅林,韩蕾.中国星级酒店空间分布与影响因子分析[J].经济地理, 2011,31(9):1580-1584.[Mei Lin, Han Lei. The characteristics and the use value of ancient villages and towns in Hunan province[J]. Economic Geography, 2011,31(9):1580-1584.]
[24]
唐健雄,何倩. 长株潭城市群酒店业空间布局研究[J]. 经济地理, 2015, 35(11):78-84.[Tang Jianxiong, He Qian. Spatial layout of lodging industry in Chang-Zhu-Tan urban agglomeration[J]. Economic Geography, 2015,35(11):78-84.]
[25]
王亚辉,王亚力,刘俊雅,等. 改革开放40年来湖南酒店业的时空演变及其影响因素[J]. 经济地理, 2021,41(6):136-146.[Wang Yahui, Wang Yali, Liu Junya, et al. Spatial-temporal evolution of hotel industry in Hunan province and its influencing factors in 1979-2019[J]. Economic Geography, 2021,41(6):136-146.]
[26]
闫丽英,韩会然,陈婉婧,等.北京市住宿业空间分布格局及影响因素研究[J].经济地理,2014,34(1):94-101.[Yan Liying, Han Huiran, Chen Wanjing, et al. Distribution and influence factors of lodging industry in Beijing city[J]. Economic Geography, 2014, 34(1):94-101.]
[27]
陶伟,古恒宇,陈昊楠.路网形态对城市酒店业空间布局的影响研究:广州案例[J]. 旅游学刊,2015,30(10):99-108.[Tao Wei, Gu Hengyu, Chen Haonan. Guangzhou's spatial distribution under the effect of the urban road network on the hotel industry[J]. Tourism Tribune, 2015,30(10):99-108.]
[28]
童昀,马勇,刘军,等. 大数据支持下的酒店业空间格局演进与预测:武汉案例[J]. 旅游学刊,2018,33(12):76-87.[Tong Yun, Ma Yong, Liu Jun, et al. Evolution and prediction of the spatial pattern of hotel industry supported by big data:A case study of Wuhan[J]. Tourism Tribune, 2018,33(12):76-87.]
[29]
龙飞,戴学锋,虞虎.基于路网形态的上海住宿业空间布局特征[J]. 地理科学,2021,41(9):1569-1577.[Long Fei, Dai Xuefeng, Yu Hu. Spatial layout characteristics of Shanghai accommodation industry based on network form[J]. Scientia Geographica Sinica, 2021,41(9):1569-1577.]
[30]
李莉,侯国林,夏四友.上海市共享住宿时空格局及影响因素识别[J]. 人文地理,2021,36(1):104-114.[Li Li, Hou Guolin, Xia Siyou. Spatial-temporal pattern and influencing factors of sharing accommodation in Shanghai[J]. Human Geography, 2021,36(1):104-114.]
[31]
赵海溶,陆林.上海市住宿接待业的空间格局差异及影响因素——基于传统酒店与共享住宿(Airbnb)的比较分析[J].经济地理,2021, 41(11):232-240.[Zhao Hairong, Lu Lin. Spatial pattern difference and influencing factors of hospitality industry in Shanghai:A comparative analysis based on traditional hotels and shared accommodations (Airbnb)[J]. Economic Geography, 2021,41(11):232-240.]
[32]
王娟,李亚娟,吕丽,等.基于互联网数据的住宿业竞争力及其空间格局——以武汉主城区高端酒店为例[J].地理科学进展,2018,37(10):1405-1415.[Wang Juan, Li Yajuan, Lv Li, et al. Hotel competitiveness evaluation and spatial pattern based on internet data:A case study of high-end hotels of Wuhan urban area[J]. Progress in Geography, 2018,37(10):1405-1415.]
[33]
刘雪春,张志斌,张翠翠,等.兰州市主城区酒店空间分布格局及影响因素[J]. 兰州大学学报(自然科学版),2017,53(2):199-205.[Liu Xuechun, Zhang Zhibing, Zhang Cuicui, et al. Spatial distribution patterns and influential factors of hotel in Lanzhou main city[J]. Journal of Lanzhou University:Natural Sciences, 2017,53(2):199-205.]
[34]
陈洪星,杨德刚,徐红涛,等.基于POI的住宿业时空格局演化及与旅游景点的空间关联研究[J].干旱区地理,2020,43(5):1382-1390.[Chen Hongxing, Yang Degang, Xu Hongtao, et al. Spatial and temporal evolution of the accommodation industry and spatial association with tourist spots based on POI[J]. Arid Land Geography, 2020, 43(5):1382-1390.]
[35]
赵艳楠,杨德刚,张新焕,等.乌鲁木齐住宿业空间分布及热点区模式研究[J]. 干旱区地理, 2016, 39(5):1143-1152.[Zhao Yannan, Yang Degang, Zhang Xinhuan, et al. Spatial distribution characteristics and hot zone patterns of lodging industry in Urumqi[J]. Arid Land Geography, 2016,39(5):1143-1152.]
[36]
夏汉军,袁孟琪,杨智,等.常德市住宿业空间结构时空演化特征及影响因素[J]. 经济地理,2020,40(6):156-165.[Xia Hanjun, Yuan Mengqi, Yang Zhi, et al. Temporal and spatial evolution characteristics and influencing factors of accommodation industry in Changde city[J]. Economic Geography, 2020,40(6):156-165.]
[37]
朱怡帆,何丹,程庆,等.都市旅游视角下上海市共享住宿空间分布特征及其影响机制[J].地理科学进展,2021,40(8):1321-1331.[Zhu Yifan, He Dan, Cheng Qing, et al. Spatial distribution of shared accommodations and its influencing mechanism in Shanghai:From the perspective of urban tourism[J]. Progress in Geography, 2021, 40(8):1321-1331.]
[38]
王朝辉,陆林,方婷,等.世博建设期上海市旅游住宿产业空间格局演化[J]. 地理学报,2012,67(10):1423-1437.[Wang Chaohui, Lu Lin, Fang Ting, et al. Spatial pattern evolution of Shanghai tourist lodging industry during the World Expo construction period[J]. Acta Geographica Sinica, 2012,67(10):1423-1437.]
[39]
Dang Y, Liu Z, Zhang W. Land-based interests and the spatial distribution of affordable housing development:The case of Beijing, China[J]. Habitat International, 2014,44:137-145.
[40]
党云晓,张文忠,刘志林.北京经济适用房布局特征及影响因素研究[J]. 地理研究,2014,33(5):876-886.[Dang Yunxiao, Zhang Wenzhong, Liu Zhilin. Spatial distribution and analysis of land-based influencing factors of economical housing projects in Beijing[J]. Geographical Research, 2014,33(5):876-886.]
[41]
刘爱华,邹哲.特大城市保障性住房空间布局与优化研究——以天津市为例[J].天津行政学院学报,2016,18(4):89-95.[Liu Aihua, Zou Zhe. Study on spatial distribution and optimization of indemnificatory housing in mega cities:A case study of Tianjin[J]. Journal of Tianjin Administration Institute, 2016,18(4):89-95.]
[42]
段兆雯,王晓强,张婷伟,等. 城市公租房社区生活空间质量研究——以西安市为例[J].人文地理,2019,34(4):81-88.[Duan Zhaowen, Wang Xiaoqiang, Zhang Tingwei, et al. Study on the quality of community living space in urban public rental housing:Taking Xi'an as a case[J]. Human Geography, 2019,34(4):81-88.]
[43]
卢俊文,袁奇峰,黄哲,等.广州租赁住房的空间分布格局及其成因[J]. 热带地理, 2018, 38(3):384-393.[Lu Junwen, Yuan Qifeng, Huang Zhe, et al. Spatial pattern and causes of rental housing in Guangzhou[J]. Tropical Geography, 2018,38(3):384-393.]
[44]
Li T, Shiran S, Dodson J. Metropolitan migration and spatial housing markets:A geographical study in Melbourne[J]. Applied Geography, 2021,129. https://doi.org/10.1016/j.apgeog.2021.102414.
[45]
Nakamura S, Avner P. Spatial distributions of job accessibility, housing rents, and poverty:The case of Nairobi[J]. Journal of Housing Economics, 2020,51. https://doi.org/10.1016/j.jhe.2020.101743.
[46]
丁旭. 保障性住房适建性评价及其空间区位选择——以杭州为例[J].城市规划,2012,36(9):70-76.[Ding Xu. Constructability evaluation and location selection of social housing:A case study on Hangzhou[J]. City Planning Review, 2012,36(9):70-76.]
[47]
罗仁泽,杨高,周春山.快速移民城市的就业空间特征及影响因素——以深圳市为例[J].华南师范大学学报(自然科学版),2020,52(5):106-117.[Luo Renze, Yang Gao, Zhou Chunshan. The characteristics and mechanisms of employment space in the fast-migrating city:A case study of Shenzhen[J]. Journal of South China Normal University(Natural Science Edition), 2020,52(5):106-117.]
[48]
王法辉.基于GIS的数量方法与应用[M].北京:商务印书馆,2009:49-104.[Wang Fahui. Method and Application Based on GIS[M]. Beijing:Commercial Press, 2009:49-104.]
[49]
Xie Z, Yan J. Kernel density estimation of traffic accidents in a network space[J]. Computers, Environment and Urban Systems, 2008, 32(5):396-406.
[50]
Bo Y, Li X, Xue Z. Spatial data analysis and spatial models[J]. Geographical Research, 1999,18(2):49-55.
[51]
Lancaster K J. A new approach to consumer theory[J]. Journal of Political Economy, 1966,74(2):132-157.
[52]
Li H, Wei Y D, Wu Y. Analyzing the private rental housing market in Shanghai with open data[J]. Land Use Policy, 2019,85:271-284.