滇中城市群日常人口流动网络特征及影响因素的空间异质性研究

罗桑扎西, 张正欣, 罗兴云, 赵筱青

人文地理 ›› 2025, Vol. 40 ›› Issue (6) : 147-160.

PDF(28644 KB)
PDF(28644 KB)
人文地理 ›› 2025, Vol. 40 ›› Issue (6) : 147-160. DOI: 10.13959/j.issn.1003-2398.2025.06.014
人口

滇中城市群日常人口流动网络特征及影响因素的空间异质性研究

作者信息 +

ANALYZING THE SPATIAL HETEROGENEITY OF DAILY POPULATION MOBILITY AND ITS DRIVERS IN THE CENTRAL YUNNAN URBAN AGGLOMERATION

Author information +
文章历史 +

摘要

日常人口流动是城市群空间重构与协同发展的关键动力。厘清其网络结构特征及影响因素的空间异质性,对于处于发育初期的城市群推进以人为核心的新型城镇化具有重要现实意义。以滇中城市群为例,本文基于2022年6月的手机信令数据,运用复杂网络分析和多尺度地理加权回归(MGWR)模型,从区县尺度系统识别人口流动网络特征及其驱动机制。研究发现:①滇中城市群日常人口流动网络呈现出“单中心集聚、一级独大、小集聚、大分散”的结构特征,核心—边缘差异显著,边缘区域联系薄弱,空间上表现出圈层化分布,整体网络尚处于初步发展阶段;②人才资源、产业条件和医疗资源对人口流动具有显著正向影响,且正向效应由南向北递增;经济发展水平、教育资源和交通距离则呈负向影响,负向效应总体由北向南增强;不同因素的空间作用尺度存在显著差异,揭示了人口流动的多尺度驱动机制。研究为理解欠发育城市群人口流动网络的空间逻辑提供了理论支撑,并从人口、交通、经济与社会服务等维度提出了空间结构优化建议,为城市群空间结构优化及区域协调发展政策制定提供了依据。

Abstract

Daily population mobility drives spatial restructuring and coordinated development of urban agglomerations. Using mobile signaling data of June 2022, this study examines the Central Yunnan Urban Agglomeration through complex network analysis and MGWR. Results show: 1) The mobility network features "mono-centric dominance, small-scale clustering, and large-scale dispersion, " with a core–periphery pattern and weak peripheral links, remaining in an early stage; 2) Talent, industry, and medical services positively affect mobility, especially in the north, while economic level, education, and transport distance exert negative effects, strengthening from north to south. These factors act at multiple spatial scales. The study clarifies the spatial logic of mobility in underdeveloped agglomerations and offers policy insights for optimizing structure and fostering coordinated regional development.

关键词

日常人口流动 / 空间网络 / 影响因素 / 空间异质性 / 滇中城市群

Key words

daily population mobility / spatial network / influencing factors / spatial heterogeneity / Central Yunnan Urban Agglomeration

引用本文

导出引用
罗桑扎西, 张正欣, 罗兴云, . 滇中城市群日常人口流动网络特征及影响因素的空间异质性研究[J]. 人文地理. 2025, 40(6): 147-160 https://doi.org/10.13959/j.issn.1003-2398.2025.06.014
Sangzhaxi LUO, Zheng-xin ZHANG, Xing-yun LUO, et al. ANALYZING THE SPATIAL HETEROGENEITY OF DAILY POPULATION MOBILITY AND ITS DRIVERS IN THE CENTRAL YUNNAN URBAN AGGLOMERATION[J]. HUMAN GEOGRAPHY. 2025, 40(6): 147-160 https://doi.org/10.13959/j.issn.1003-2398.2025.06.014
中图分类号: TU984.113   

参考文献

1
尹延中, 邬群勇, 林瀚, 等. 人口流动"视域下中国城市中心性和社群格局分析[J]. 地球信息科学学报, 2024, 26(3): 666- 678.
Yin Yanzhong, Wu Qunyong, Lin Han, et al. Analysis of urban centrality and community patterns from the perspective of "intercity mobility flow" in china[J]. Journal of Geo-information Science, 2024, 26(3): 666- 678.
2
洪良, 张文静, 班鹏飞, 等. 基于手机信令数据的广西区域多尺度网络空间结构研究[J]. 热带地理, 2022, 42(8): 1264- 1274.
Hong Liang, Zhang Wenjing, Ban Pengfei, et al. Research on the multi-scale network spatial structure of Guangxi using mobile signaling data[J]. Tropical Geography, 2022, 42(8): 1264- 1274.
3
戚伟, 赵美风, 刘盛和. 1982-2010年中国县市尺度流动人口核算及地域类型演化[J]. 地理学报, 2017, 72(12): 2131- 2146.
Qi Wei, Zhao Meifeng, Liu Shenghe. Spatial statistics and regional types evolution of China's county-level floating population during 1982-2010[J]. Acta Geographica Sinica, 2017, 72(12): 2131- 2146.
4
王洁晶, 张沐华, 王霓霓. 中国流动人口分布的空间格局和影响因素——基于人口普查分县数据的研究[J]. 人口学刊, 2023, 45(4): 82- 96.
Wang Jiejing, Zhang Muhua, Wang Nini. Spatial pattern and influencing factors of China's migrant population distribution: A study based on county-level data from national population censuses[J]. Population Journal, 2023, 45(4): 82- 96.
5
李莉, 刘颖, 唐晨珂, 等. 城市群流动人口居留意愿网络特征分析及空间模式划分[J]. 热带地理, 2024, 44(3): 492- 504.
Li Li, Liu Ying, Tang Chenke, et al. Network characteristics analysis and spatial pattern division of settlement intention of floating population in urban agglomerations[J]. Tropical Geography, 2024, 44(3): 492- 504.
6
罗桑扎西, 甄峰. 基于手机数据的城市公共空间活力评价方法研究——以南京市公园为例[J]. 地理研究, 2019, 38(7): 1594- 1608.
Luo Sangzhaxi, Zhen Feng. How to evaluate public space vitality based on mobile phone data: An empirical analysis of Nanjing's Parks[J]. Geographical Research, 2019, 38(7): 1594- 1608.
7
曹广忠, 陈思创, 刘涛. 中国五大城市群人口流入的空间模式及变动趋势[J]. 地理学报, 2021, 76(6): 1334- 1349.
Cao Guangzhong, Chen Sichuang, Liu Tao. Changing spatial patterns of internal migration to five major urban agglomerations in China[J]. Acta Geographica Sinica, 2021, 76(6): 1334- 1349.
8
黎芷嫣, 谭一洺, 黄耿志. 珠三角城市群流动人口居留意愿的特征分异及影响因素[J]. 热带地理, 2024, 44(8): 1513- 1526.
Li Zhiyan, Tan Yiming, Huang Gengzhi. Characteristics and influencing factors of floating population's settlement intention in the Pearl River Delta[J]. Tropical Geography, 2024, 44(8): 1513- 1526.
9
陈双, 周锐, 高峻. 基于腾讯迁徙大数据的长三角城市群春运人口流动时空特征[J]. 人文地理, 2020, 35(4): 130- 138.
Chen Shuang, Zhou Rui, Gao Jun. Spatial-temporal characteristics of population flow during spring festival travel rush in the Yangtze River delta urban agglomeration based on tencent migration data[J]. Human Geography, 2020, 35(4): 130- 138.
10
黄志强, 甄峰, 席广亮, 等. 南京都市圈日常人口流动网络结构特征及影响因素[J]. 人文地理, 2023, 38(4): 112- 120.
Huang Zhiqiang, Zhen Feng, Xi Guangliang, et al. Structural characteristics and influencing factors of daily population movement network in Nanjing Metropolitan Area[J]. Human Geography, 2023, 38(4): 112- 120.
11
廖创场, 李晓明, 洪武扬, 等. 交通流空间视角下粤港澳大湾区网络结构多维测度[J]. 地理研究, 2023, 42(2): 550- 562.
Liao Chuangchang, Li Xiaoming, Hong Wuyang, et al. Multi-dimensional measurement of network structure of Guangdong-Hong Kong-Macao Greater Bay Area from the perspective of traffic flows space[J]. Geographical Research, 2023, 42(2): 550- 562.
12
ZhangYingna, 王悦, 胡昊宇, 等. 基于手机信令大数据的京津冀城市群人口时空分布与流动特征分析[J]. 地域研究与开发, 2023, 42(3): 161-167, 180.
Zhang Yingna, Wang Yue, Hu Haoyu, et al. Analysis of population spatial-temporal distribution and mobility in BeijingTianjin-Hebei urban agglomeration based on mobile phone trajectory big data[J]. Areal Research and Development, 2023, 42(3): 161-167, 180.
13
高苹, 戚伟, 刘盛和, 等. 中国城市网络结构特征及组织模式——基于长短期人口流的比较[J]. 人文地理, 2023, 38(6): 82- 91.
Gao Ping, Qi Wei, Liu Shenghe, et al. Comparison of spatial structure and organization mode of city networks from the perspective of long-term and short-term population flows[J]. Human Geography, 2023, 38(6): 82- 91.
14
Meng H, Huang X J, Mao X Y, et al. The formation and proximity mechanism of population flow networks under multiple traffic in China[J]. Cities, 2023, 136, 104211.
15
贺三维, 张臻, 祁子良, 等. 基于交通流和辐射模型的城市群网络结构及驱动因素分析——以长江中游城市群为例[J]. 地理科学, 2023, 43(11): 1900- 1910.
He Sanwei, Zhang Zhen, Qi Ziliang, et al. The network structure and driving factors of urban competitiveness based on traffic flow and radiation model: A case study of the urban agglomeration in the Middle Reaches of the Yangtze River, China[J]. Scientia Geographica Sinica, 2023, 43(11): 1900- 1910.
16
Gu X Y, Tang X Y, Chen T, et al. Predicting the network shift of large urban agglomerations in China using the deep-learning gravity model: A perspective of population migration[J]. Cities, 2024, 145, 104680.
17
Pan J H, Lai J B. Spatial pattern of population mobility among cities in China: Case study of the national day plus Mid-Autumn Festival based on tencent migration data[J]. Cities, 2019, 94, 55- 69.
18
Wang X W, Ding S L, Cao W D, et al. Research on network patterns and influencing factors of population flow and migration in the Yangtze River delta urban agglomeration, China[J]. Sustainability, 2020, 12(17): 6803.
19
Yin H Y, Zhang Z H, Wan Y, et al. Sustainable network analysis and coordinated development simulation of urban agglomerations from multiple perspectives[J]. Journal of Cleaner Production, 2023, 413, 137378.
20
赖建波, 朱军, 郭煜坤, 等. 中原城市群人口流动空间格局与网络结构韧性分析[J]. 地理与地理信息科学, 2023, 39(2): 55- 63.
Lai Jianbo, Zhu Jun, Guo Yukun, et al. Analysis of spatial pattern and network structure resilience of population mobility in Zhongyuan urban agglomeration[J]. Geography and Geo-information Science, 2023, 39(2): 55- 63.
21
李雪铭, 刘贺, 田深圳, 等. 东北三省城市人居活动网络结构及影响因素分析——基于百度贴吧分析[J]. 地理科学进展, 2019, 38(11): 1726- 1734.
Li Xueming, Liu He, Tian Shenzhen, et al. Network structure and influencing factors of urban human habitat activities in the three provinces of Northeast China: Based on baidu post bar data[J]. Progress in Geography, 2019, 38(11): 1726- 1734.
22
Zhao Y T Z, Gao Y. Spatial patterns and trends of inter-city population mobility in China-based on Baidu migration big data[J]. Cites, 2024, 151, 105124.
23
Zhang W Y, Derudder B, Wang J H, et al. Regionalization in the Yangtze River Delta, China, from the perspective of inter-city daily mobility[J]. Regional Studies, 2018, 52(4): 528- 541.
24
许蓝方, 武继磊, 庞丽华. 中国地级以上城市流动人口时空格局演变及影响因素分析[J]. 人口与发展, 2023, 29(4): 89- 99.
Xu Lanfang, Wu Jilei, Pang Lihua. Analysis on the temporal and spatial evolution and influencing factors of prefecture-level floating population in China[J]. Population and Development, 2023, 29(4): 89- 99.
25
钱宏胜, 朱宇, 林李月, 等. 中国流动人口的区域性回流及其区位选择的影响因素[J]. 地理研究, 2023, 42(8): 2089- 2103.
Qian Hongsheng, Zhu Yu, Lin Liyue, et al. Regional return migration of China's floating population and the factors influencing their locational selections[J]. Geographical Research, 2023, 42(8): 2089- 2103.
26
李拓, 李斌. 中国跨地区人口流动的影响因素: 基于286个城市面板数据的空间计量检验[J]. 中国人口科学, 2015(2): 73-83, 127.
Li Tuo, Li Bin. Influencing factors of cross-regional population mobility in China-Spatial econometric test based on panel data of 286 cities[J]. Chinese Journal Population Science, 2015(2): 73-83, 127.
27
詹庆明, 杨苏舒, 肖琨, 等. 基于手机信令数据的武汉市人口迁入成因研究[J]. 地理信息世界, 2020, 27(3): 14- 19.
Zhan Qingming, Yang Sushu, Xiao Kun, et al. Study on population migration to Wuhan based on mobile signaling data[J]. Journal of Spatio-temporal Information, 2020, 27(3): 14- 19.
28
姚永玲, 邵璇璇. 中国城市人口空间网络结构及其影响因素[J]. 人口与经济, 2020(6): 1- 16.
Yao Yongling, Shao Xuanxuan. Spatial network structure of urban population and its influencing factors in China[J]. Population & Economics, 2020(6): 1- 16.
29
张伟丽, 晏晶晶, 聂桂博. 中国城市人口流动格局演变及影响因素分析[J]. 中国人口科学, 2021(2): 76-87, 126-128.
Zhang Weili, Yan Jingjing, Nie Guibo. Evolution of the pattern of China's urban population flows and its proximate determinants[J]. China Population Science, 2021(2): 76-87, 126-128.
30
Fotheringham A S, Oshan, et al. Geographically weighted regression and multicollinearity: Dispelling the myth[J]. Journal of Geographical Systems, 2016, 18(4): 303- 329.
31
赵梓渝, 魏冶, 王士君, 等. 有向加权城市网络的转变中心性与控制力测度——以中国春运人口流动网络为例[J]. 地理研究, 2017, 36(4): 647- 660.
Zhao Ziyu, Wei Ye, Wang Shijun, et al. Measurement of directed alternative centricity and power of directed weighted urban network: A case of population flow network of China during "Chunyun" period[J]. Geographical Research, 2017, 36(4): 647- 660.
32
魏冶, 修春亮, 刘志敏, 等. 春运人口流动透视的转型期中国城市网络结构[J]. 地理科学, 2016, 36(11): 1654- 1660.
Wei Ye, Xiu Chunliang, Liu Zhimin, et al. Spatial pattern of city network in transitional China based on the population flows in "Chunyun" Period[J]. Scientia Geographica Sinica, 2016, 36(11): 1654- 1660.
33
Zhong C, Arisona S M, Huang X F, et al. Detecting the dynamics of urban structure through spatial network analysis[J]. International Journal of Geographical Information Science, 2014(11): 2178- 2199.
34
Fortunato S, Hric D. Community detection in networks: A user guide[J]. Physics Reports, 2016(659): 1- 44.
35
Fotheringham A S, Yang W B, et al. Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247- 1265.
36
兰峰, 王晨, 孙伟增, 等. 拥挤效应还是规模效应: 人口流入对基本公共服务水平的影响研究[J]. 华东师范大学学报(哲学社会科学版), 2022(1): 127-142, 175.
Lan Feng, Wang Chen, Sun Weizeng, et al. Crowding effect or scale effect: On the impact of population inflow on the level of basic public services[J]. Journal of East China Normal University (Humanities and Social Sciences), 2022(1): 127-142, 175.
37
魏玺, 甄峰, 席广亮. 南京都市圈居民非通勤出行特征及其影响因素研究[J]. 地理科学, 2023, 43(10): 1740- 1750.
Wei Xi, Zhen Feng, Xi Guangliang. Characteristics and influencing factors of residents non-commuting travel in Nanjing metropolitan area[J]. Scientia Geographica Sinica, 2023, 43(10): 1740- 1750.
38
王贶, 柯日宏, 李胜楠, 等. 多尺度视角下的城市旅游流网络结构特征分析——以长沙市为例[J]. 地球信息科学学报, 2025, 27(4): 967- 978.
Wang Kuang, Ke Rihong, Li Shengnan, et al. Analysis of the characteristics of urban tourist flow network structure from a multiscale perspective: A case study of Changsha[J]. Journal of Geoinformation Science, 2025, 27(4): 967- 978.
39
郑鑫, 王甫园, 李俊霏, 等. 基于游客GPS轨迹大数据的西藏旅游流格局与成因[J]. 经济地理, 2024, 44(11): 212- 221.
Zheng Xin, Wang Fuyuan, Li Junfei, et al. Spatial pattern and influencing factors of tourism flow in Xizang autonomous region based on tourists' GPS trajectory data[J]. Economic Geography, 2024, 44(11): 212- 221.
40
林赛南, 冯馨, 王雨. 流动人口再流动的空间选择特征及影响因素[J]. 地理科学, 2023, 43(9): 1537- 1547.
Lin Sainan, Feng Xin, Wang Yu. Migrants' spatial choice in onward migration: Features and mechanisms[J]. Scientia Geographica Sinica, 2023, 43(9): 1537- 1547.
41
Levytska O, Mulska O, Ivaniuk U, et al. Modelling the conditions affecting population migration activity in the eastern european region: the case of Ukraine[J]. Tem Journal, 2020(2): 507.
42
李文静, 朱喜安. 雾霾污染对人口迁移的影响及传导机制: 基于产业结构和人力资本的中介效应[J]. 东岳论丛, 2023(4): 126- 136.
Li Wenjing, Zhu Xi-an. The impact of haze pollution on population migration and its transmission mechanism-based on the mediating effect of industrial structure and human capital[J]. Dongyue Tribune, 2023(4): 126- 136.

基金

云南省西南联合研究生院科技专项—基础研究和应用基础研究重大项目(202302AO370007);云南省科学技术厅基础研究专项项目(202301AT070182);“兴滇英才支持计划”项目(C619300A061);云南省科学技术厅基础研究专项项目(202201AU070025)

版权

版权所有,未经授权。
PDF(28644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/