人文地理
 
  联系我们 | 在线留言 | 注册 | 遗忘密码?
  读者在线:
  用户名   密码   登录
2025年4月5日 星期六  首页 期刊介绍 编委会 作者中心 审稿中心 在线期刊 | 期刊订阅 | 下载中心 | 广告合作 友情链接 | 联系我们
人文地理  2022, Vol. 37 Issue (6): 72-80    DOI: 10.13959/j.issn.1003-2398.2022.06.009
时空间行为专栏 最新目录| 下期目录| 过刊浏览| 高级检索 |
基于时空行为大数据的城市社会空间分异研究
陈梓烽
中山大学地理科学与规划学院, 广州 510006
ANALYZING URBAN SOCIO-SPATIAL SEGREGATION THROUGH SPACE-TIME BEHAVIORAL BIG DATA
CHEN Zi-feng
School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006

全文: PDF (7072 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 本文对基于时空行为大数据的社会空间分异研究进行了阶段性总结,梳理了主要的研究进展、并展望未来的研究方向。已有研究利用手机数据、社交媒体数据、交通运行数据三类时空行为大数据,在多个方面推动了社会空间分异研究的进展,包括揭示了社会空间分异的多尺度动态性、实现了时空共存下个体社会环境暴露的精细化测量、丰富了社会空间分异研究的社会网络与主观认知视角;但这些研究大多止步于现象层面的关联性分析,缺少对社会空间分异深层次机制以及理论、政策外延的剖析。未来研究需充分挖掘时空行为大数据解读社会空间的潜力,通过深入理解社会空间分异的时间性、再思社会空间分异与社会融合的关系,拓展研究的理论与政策外延。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈梓烽
关键词 时空行为大数据社会空间分异时空行为研究活动空间社会融合    
Abstract:Studies of urban socio-spatial segregation has been increasingly benefited from the availability of space-time behavioral big data. The latter can well enrich the existing insights of activity-space segregation, which were predominantly based on conventional datasets such as activity diary data with substantially smaller sample sizes. Specifically, while studies with conventional datasets only adopted residential population as a proxy of the socioeconomic structures in the activity places, the use of space-time behavioral big data can effectively unravel the temporal variation of the socioeconomic structures by tracing the changing locations of the population over different time periods. Echoing the emerging strand of studies that utilized space-time behavioral big data to examine socio-spatial segregation, this paper presents a review of the existing studies through summarizing the types of data and analytical approaches used in those studies as well as the relevant contributions. Most of the existing studies were found being derived from three types of spacetime behavioral big datasets, namely cellphone data, social media data and transportation-derived data. Among the existing studies, three major contributions can be identified. First, the existing studies had unraveled the temporal variations and periodic patterns of socio-spatial segregation that were manifested at multiple temporal scales. Second, facilitated by space-time behavioral big data, the existing studies managed to measure individual socio-contextual exposure (i.e., co-presence) in a real-time manner. Third, the existing studies extended the analytical lens of socio-spatial segregation by including data of social network and tweet-based subjective attitudes. The present paper thus draws attention to the underrated potentials of spacetime behavioral big data of conducting critical-quantitative analyses.
Key wordsspace-time behavioral    socio-spatial segregation    space-time behavior studies    activity space    social integration   
收稿日期: 2021-09-06     
PACS: K901  
基金资助:国家自然科学基金项目(42271204); 中山大学中央高校基本科研业务费青年教师团队项目(22qntd2001)
作者简介: 陈梓烽(1989-),男,广东深圳人,博士,副教授,主要研究方向为城市地理学与行为地理学。E-mail:chenzif5@mail.sysu.edu.cn。
引用本文:   
陈梓烽. 基于时空行为大数据的城市社会空间分异研究[J]. 人文地理, 2022, 37(6): 72-80. CHEN Zi-feng. ANALYZING URBAN SOCIO-SPATIAL SEGREGATION THROUGH SPACE-TIME BEHAVIORAL BIG DATA. HUMAN GEOGRAPHY, 2022, 37(6): 72-80.
链接本文:  
http://rwdl.xisu.edu.cn/CN/10.13959/j.issn.1003-2398.2022.06.009      或     http://rwdl.xisu.edu.cn/CN/Y2022/V37/I6/72
2011 © 人文地理编辑部 版权所有
技术支持: 北京玛格泰克科技发展有限公司