大数据时代的精细化城市模拟:方法、数据和案例

龙瀛, 茅明睿, 毛其智, 沈振江, 张永平

人文地理 ›› 2014, Vol. 29 ›› Issue (3) : 7-13.

PDF(1874 KB)
PDF(1874 KB)
人文地理 ›› 2014, Vol. 29 ›› Issue (3) : 7-13.
专栏

大数据时代的精细化城市模拟:方法、数据和案例

  • 龙瀛1,2, 茅明睿1, 毛其智3, 沈振江4, 张永平5,6
作者信息 +

FINE-SCALE URBAN MODELING AND ITS OPPORTUNITIES IN THE“BIG DATA” ERA: METHODS, DATA AND EMPIRICAL STUDIES

  • LONG Ying1,2, MAO Ming-rui1, MAO Qi-zhi3, SHEN Zhen-jiang4, ZHANG Yong-ping5,6
Author information +
文章历史 +

摘要

以地块作为基本空间单元并以城市活动主体作为模拟对象的精细化模拟是未来城市模型研究的重要方向,大数据(big data)时代的到来也为其提供了重要发展机遇。本文重点对精细化城市模型的主流建模方法进行了介绍,包括元胞自动机(Cellular Automata,CA)、基于主体建模(Agent-based Modelling,ABM)和传统的微观模拟(Microsimulation,MSM)这三种自下而上的微观模拟方法。之后结合精细化城市模型的高标准数据需求问题,对国际上通行的用于精细化模拟数据合成(population synthesis)的方法进行了综述,并给出笔者近年来在精细化城市模拟方面的多项实践案例,最后提出了以GIS为平台,结合CA/ABM/MSM方法,构建我国精细化城市模型的框架体系和关键技术,以期支持我国大城市地区空间政策的制定和评估。

Abstract

Fine-scale simulation, in which the parcel is the basic spatial unit and urban activity body is the simulation object, is an important research direction for the urban modeling in the future, and the arrival of big data era also provides an important development opportunity for it. In the paper, the mainstream modeling methods for fine-scale urban modeling are introduced mainly, including cellular automata (CA), agentbased modeling(ABM) and traditional Microsimulation (MSM), all of which are microscopic simulation from the bottom up. Then, according with the high-standard data requirements for the fine-scale urban modeling, the paper sums up the internationally acceptable methods for the fine-scale simulation data synthesis (population synthesis), and also gives a number of practical cases about the fine-scale urban modeling in recent years. Finally, the paper puts forward the framework and key technology, based on GIS platform and combined with CA/ABM/MSM method, to construct fine- scale urban modeling, to support the development and assessment of spatial policy in the metropolitan area.

关键词

城市模型 / 大数据 / 精细化 / 规划支持系统(PSS) / 北京

Key words

urban modeling / big data / fine-scale / planning support systems (PSS) / Beijing

引用本文

导出引用
龙瀛, 茅明睿, 毛其智, 沈振江, 张永平. 大数据时代的精细化城市模拟:方法、数据和案例[J]. 人文地理. 2014, 29(3): 7-13
LONG Ying, MAO Ming-rui, MAO Qi-zhi, SHEN Zhen-jiang, ZHANG Yong-ping. FINE-SCALE URBAN MODELING AND ITS OPPORTUNITIES IN THE“BIG DATA” ERA: METHODS, DATA AND EMPIRICAL STUDIES[J]. HUMAN GEOGRAPHY. 2014, 29(3): 7-13
中图分类号: TU984   

基金

国家自然科学基金(51078213;51278526)


PDF(1874 KB)

Accesses

Citation

Detail

段落导航
相关文章

/