Abstract:With the process of economic development and industrial structure transformation, China's employment spatial pattern is undergoing a huge transformation. This article is based on the data from the fifth to seventh population censuses by county, revealing the spatiotemporal pattern of the employed population at the city and county levels in China since the new century. It identifies the regional types and industrial characteristics of the contraction of the employed population, and uses the ordinal logistic regression model to explore the influencing factors of the contraction of the employed population. The main conclusions are as follows: 1) Since 2000, the employed population in China has shown a trend of first increasing and then decreasing, The number of counties maintaining the employment growth has significantly decreased; 2) Among the three types of contraction areas, the episodic shrinkage area accounts for about half of the country, mostly transitioning from growth cessation to contraction, mainly distributed in the central and western regions. The continuous shrinkage area accounts for about 1/3, mainly distributed at the junction of the three major economic belts. The non-shrinking area accounts for about 15%, mainly distributed in the northwest region and the three major urban agglomerations; 3) The intensity of industrial reduction in areas with reduced employment shows a decreasing trend in the primary, secondary, and tertiary industries; 4) A high wage level, the age structure with a high proportion of working-age population, and the development of the secondary and tertiary industries can help suppress the contraction of the employed population, while an increase in the minimum wage standard can promote the occurrence of employment population shrinkage.
李浩天, 薛德升, 黄耿志, 张沈圆. 2000—2020年中国就业人口时空格局及影响因素研究[J]. 人文地理, 2024, 39(5): 96-108.
LI Hao-tian, XUE De-sheng, HUANG Geng-zhi, ZHANG Shen-yuan. STUDY ON THE SPATIO-TEMPORAL PATTERN AND INFLUENCING FACTORS OF CHINESE EMPLOYED POPULATION FROM 2000 TO 2020. HUMAN GEOGRAPHY, 2024, 39(5): 96-108.
刘炜,杨杰,龚岳.基于大数据的中国城市工作人口的就业空间分异:以武汉市为例[J]. 经济地理,2022,42(9):78-86. [Liu Wei, Yang Jie, Gong Yue. Differentiation of urban employment space in China: A case study of Wuhan using big data[J]. Economic Geography, 2022,42(9):78-86.]
[2]
Ellis M, Wright R, Parks V. Geography and the immigrant division of labor[J]. Economic Geography, 2007,83(3):255-281.
[3]
Ellis M, Wright R, Parks V. Work together, live apart? Geographies of racial and ethnic segregation at home and at work[J]. Annals of the Association of American Geographers, 2004,94(3):620-637.
[4]
Curran W. 'From the frying pan to the oven': Gentrification and the experience of industrial displacement in Williamsburg, Brooklyn[J]. Urban Studies, 2007,44(8):1427-1440.
[5]
Ruhs M, Anderson B. Semi‐compliance and illegality in migrant labour markets: An analysis of migrants, employers and the state in the UK[J]. Population, Space and Place, 2010,16(3):195-211.
[6]
Frydenlund S. Refugee-ness and exploitation: A feminist geography of shitty jobs[J/OL]. Geopolitics, 2023:1-28.https://doi.org/10.1080/14650045.2023.2217758.
[7]
Kara H, Mullings B. Navigating wait space in uncertain times: Young women and precarious labour in Turkey[J]. Antipode, 2023, 55(4):1047-1067.
[8]
Tomlinson M. Conceptualising transitions from higher education to employment: Navigating liminal spaces[J/OL]. Journal of Youth Studies, 2023:1-18.https://doi.org/10.1080/13676261.2023.2199148.
[9]
Fu Y, Li Y, Li X. Coexisting or coworking? The reconfigured office spaces in two emerging global cities[J/OL]. Journal of Urban Affairs, 2023:1-18.https://doi.org/10.1080/07352166.2023.2242531.
[10]
孙铁山.北京市居住与就业空间错位的行业差异和影响因素[J]. 地理研究,2015,34(2):351-363. [Sun Tieshan. Spatial mismatch between residences and jobs by sectors in Beijing and its explanations [J]. Geographical Research, 2015,34(2):351-363.]
[11]
张学波,宋金平,陈丽娟,等.北京都市区就业空间分异与职住空间错位行业识别[J]. 人文地理,2019,34(3):83-90. [Zhang Xuebo, Song Jinping, Chen Lijuan, et al. Employment spatial differentiation and the identification of industries affecting on jobs-housing spatial mismatch in Beijing metropolitan area[J]. Human Geography, 2019, 34(3):83-90.]
[12]
王林,杨棽. 重庆市公租房居民职住时空特征研究[J]. 人文地理, 2021,36(5):101-110. [Wang Lin, Yang Shen. A study on the temporal and spatial characteristics of residents' job and residence in the public rental housing in Chongqing[J]. Human Geography, 2021, 36(5):101-110.]
[13]
朱玮,梁雪媚,桂朝,等.上海职住优化效应的代际差异[J]. 地理学报,2020,75(10):2192-2205. [Zhu Wei, Liang Xuemei, Gui Chao, et al. The inter-generational differences in the effects of job-housing optimization in Shanghai[J]. Acta Geographica Sinica, 2020,75(10): 2192-2205.]
[14]
王振波,朱传耿.中国就业的空间模式及区域划分[J]. 地理学报,2007, 62(2):191-199. [Wang Zhenbo, Zhu Chuangeng. Employment spatial models and regionalization of China[J]. Acta Geographica Sinica, 2007, 62(2):191-199.]
[15]
王慧,吴晓.南京市主城区农民工就业空间分异的演变[J]. 经济地理,2019,39(9):71-81. [Wang Hui, Wu Xiao. Evolution of employment space differentiation of migrant workers in main urban area of Nanjing city[J]. Economic Geography, 2019,39(9):71-81.]
[16]
王晖.南京都市区就业空间结构演变[J]. 经济地理,2020,40(5):145-154. [Wang Hui. Evolution of employment spatial structure in Nanjing metropolitan area[J]. Economic Geography, 2020,40(5):145-154.]
[17]
孙铁山,王兰兰,李国平.北京都市区人口—就业分布与空间结构演化[J]. 地理学报,2012,67(6):829-840. [Sun Tieshan, Wang Lanlan, Li Guoping. Distributions of population and employment and evolution of spatial structures in the Beijing metropolitan area[J]. Acta Geographica Sinica, 2012,67(6):829-840.]
[18]
孙铁山,齐云蕾,刘霄泉.北京都市区就业结构升级与空间格局演化[J]. 经济地理,2014,34(4):97-104. [Sun Tieshan, Qi Yunlei, Liu Xiaoquan. Changing intra-metropolitan spatial distribution of employment with economic restructuring in Beijing metropolitan area [J]. Economic Geography, 2014,34(4):97-104.]
[19]
夏永久,黄友琴,李洁.南京城市低收入居民被迫搬迁后的就业变动及影响因素[J]. 地理科学,2021,41(6):1050-1060. [Xia Yongjiu, Huang Youqin, Li Jie. Urban low-income residents' employment changes and dynamics after displacement in Nanjing, China[J]. Scientia Geographica Sinica, 2021,41(6):1050-1060.]
[20]
何田,廖和平,孙平军,等.西南喀斯特区贫困劳动力转移就业空间格局及影响因素:以云南省永善县为例[J]. 人文地理,2022,37(4): 158-165,181. [He Tian, Liao Heping, Sun Pingjun, et al. Spatial pattern and influencing factors of impoverished labor transfer employment in karst region of southwest: A case study of Yongshan county in Yunnan province, China[J]. Human Geography, 2022,37(4):158-165,181.]
[21]
齐宏纲,赵美风,刘盛和,等.2000—2015年中国高学历人才省际迁移的演化格局及影响机理[J]. 地理研究,2022,41(2):456-479. [Qi Honggang, Zhao Meifeng, Liu Shenghe, et al. Evolution pattern and its driving forces of China's interprovincial migration of highlyeducated talents from 2000 to 2015[J]. Geographical Research, 2022,41(2):456-479.]
[22]
张艳茹,喻忠磊,胡志强,等.城市舒适物、经济机会、城市规模对中国高学历劳动力空间分布的影响[J]. 热带地理,2021,41(2):243-255. [Zhang Yanru, Yu Zhonglei, Hu Zhiqiang, et al. The influence of urban amenities, economic opportunities and city size on the spatial distribution of highly educated workers in China[J]. Tropical Geography, 2021,41(2):243-255.]
[23]
刘涛,彭荣熙,卓云霞等.2000—2020年中国人口分布格局演变及影响因素[J]. 地理学报, 2022,77(2):381-394. [Liu Tao, Peng Rongxi, Zhuo Yunxia, et al. China's changing population distribution and influencing factors: From the 2020 census data[J]. Acta Geographica Sinica, 2022,77(2):381-394.]
[24]
陈培阳,朱喜钢.基于不同尺度的中国区域经济差异[J]. 地理学报,2012, 67(8):1085-1097. [Chen Peiyang, Zhu Xigang. Regional inequalities in China at different scales[J]. Acta Geographica Sinica, 2012,67(8): 1085-1097.]
[25]
袁志刚,封进,张红.城市劳动力供求与外来劳动力就业政策研究: 上海的例证及启示[J]. 复旦学报(社会科学版),2005(5):202-212. [Yuan Zhigang, Feng Jin, Zhang Hong. Urban labor market and policies for migrant labors: The case of Shanghai and its implications[J]. Fudan Journal(Social Sciences Edition), 2005(5):202-212.]
[26]
龚玉泉,袁志刚.中国经济增长与就业增长的非一致性及其形成机理[J]. 经济学动态,2002(10):35-39. [Gong Yuquan, Yuan Zhigang. The inconsistency between China's economic growth and employment growth and its formation mechanism[J]. Economic Perspectives, 2002(10):35-39.]
[27]
赵瑾. 贸易与就业:国际研究的最新进展与政策导向:兼论化解中美贸易冲突对我国就业影响的政策选择[J]. 财贸经济,2019, 40(3):5-18. [Zhao Jin. Trade and employment: Literature review of international studies on the latest progress and policy orientation: On the policy choice of resolving the impact of Sino-US trade conflicts on China's employment[J]. Finance & Trade Economics, 2019,40(3):5-18.]
[28]
刘玉成,童光荣.经济增长、人口、工资对就业的影响及地区比较[J]. 经济经纬,2013(2):23-27. [Liu Yucheng, Tong Guangrong. Influence of economic growth, population and wages on employment and comparisons between regions[J]. Economic Survey, 2013(2): 23-27.]
[29]
李建伟.我国劳动力供求格局、技术进步与经济潜在增长率[J]. 管理世界,2020,36(4):96-113. [Li Jianwei. Labor supply and demand pattern, technological progress and potential economic growth rate in China[J]. Journal of Management World, 2020,36(4):96-113.]
[30]
魏燕,龚新蜀.技术进步、产业结构升级与区域就业差异:基于我国四大经济区31个省级面板数据的实证研究[J]. 产业经济研究,2012(4): 19-27. [Wei Yan, Gong Xinshu. The progress of science and technology, the upgrading of the industrial structure and regional employment differences: Based on the empirical studies by 31 provincial panel data in the four major economic zones of China[J]. Industrial Economics Research, 2012(4):19-27.]
[31]
李从容,祝翠华,王玉婷.技术创新、产业结构调整对就业弹性影响研究:以中国为例的经验分析[J]. 科学学研究,2010,28(9):1428-1434. [Li Congrong, Zhu Cuihua, Wang Yuting. Research on the impact of technological innovation and industrial structure adjustments on employment elasticity: Empirical analysis of the Case from China[J]. Studies in Science of Science, 2010,28(9):1428-1434.]
[32]
杜传忠,许冰.技术进步与产业结构升级的就业效应:2000—2014年省级面板数据分析[J]. 科技进步与对策,2017,34(13):55-60. [Du Chuanzhong, Xu Bing. A research on employment effect of technical progress and industrial structure upgrading: Based on the empirical analysis by 2000—2014 provincial panel data[J]. Science & Technology Progress and Policy, 2017,34(13):55-60.]
[33]
王国梁,吕晨炜,徐舒琪.技术创新对就业的“双刃剑”效应孰强孰弱?基于1980—2020年中国宏观数据的实证检验[J]. 华东经济管理,2022,36(2):48-56. [Wang Guoliang, Lv Chenwei, Xu Shuqi. Which is stronger of the "double-edged sword" effect of technological innovation on employment: Empirical test based on China's macro data from 1980 to 2020[J]. East China Economic Management, 2022,36(2):48-56.]
[34]
Vaizey J, Schultz T W. Investment in human capital[J]. The Economic Journal, 1972,82(326):787-788.
[35]
刘诗濛,王逸飞,卢晶亮.人力资本集聚对城市工资与就业增长的影响:来自中国主要城市的证据[J]. 劳动经济研究,2021,9(1):27-49. [Liu Shimeng, Wang Yifei, Lu Jingliang. The effect of human capital agglomeration on urban wage and employment growth: Evidence from China's major cities[J]. Studies in Labor Economics, 2021,9(1):27-49.]
[36]
范洪敏,穆怀中.中国人口结构与产业结构耦合分析[J]. 经济地理,2015, 35(12):11-17. [Fan Hongmin, Mu Huaizhong. The coupling between population structure and industrial structure of China[J]. Economic Geography, 2015,35(12):11-17.]
[37]
田成诗,马嘉彧.人口老龄化对中国宏观经济的影响:基于消费可能性边界的研究[J]. 人口与经济,2020(1):63-74. [Tian Chengshi, Ma Jiayu. The impact of population aging on Chinese macroeconomic: Based on consumption probability frontier[J]. Population & Economics, 2020(1):63-74.]
[38]
蔡昉. 人口转变、人口红利与经济增长可持续性:兼论充分就业如何促进经济增长[J]. 人口研究,2004(2):2-9. [Cai Fang. Population transformation, population dividend, and sustainability of economic growth: Also on how full employment promotes economic growth[J]. Population Research, 2004(2):2-9.]
[39]
郭长林. 财政政策扩张、异质性企业与中国城镇就业[J]. 经济研究,2018,53(5):88-102. [Guo Changlin. Fiscal expansion, heterogeneous firms and employment in urban China[J]. Economic Research Journal, 2018,53(5):88-102.]
[40]
姚先国,王光新.最低工资对就业影响的理论研究[J]. 重庆大学学报(社会科学版),2008(1):17-22. [Yao Xianguo, Wang Guangxin. Theoretical research on the impact of minimum wage on employment[J]. Journal of Chongqing University (Social Science Edition), 2008(1):17-22.]
[41]
张剑,王玉峰,周子琪. 最低工资制度对非正规就业的影响研究: 来自中国省级动态面板数据的证据[J]. 财经论丛,2019(10):12-20. [Zhang Jian, Wang Yufeng, Zhou Ziqi. A study on the mechanism of the impact of the minimum wage on employment: Evidence from China's provincial dynamic panel data[J]. Collected Essays on Finance and Economics, 2019(10):12-20.]
[42]
李太平,岑丹.最低工资对我国制造业就业影响的实证检验[J]. 工业技术经济,2020,39(7):31-38. [Li Taiping, Cen Dan. An empirical test of the impact of minimum wage on the employment of manufacturing industry in China[J]. Journal of Industrial Technological Economics, 2020,39(7):31-38.]
[43]
何仲禹,翟国方.我国大学生就业城市选择意愿及其影响因素分析[J]. 人文地理,2015,30(2):37-42,102. [he zhongyu, zhai guofang. employment location choice of chinese college students and its determinants[J]. Human Geography, 2015,30(2):37-42,102.]
[44]
游珍,封志明,杨艳昭.中国1km地形起伏度数据集[J]. 全球变化数据学报(中英文),2018,2(2):151-155,274-278. [You Zhen, Feng Zhiming, Yang Yanzhao. Relief degree of land surface dataset of China (1km)[J]. Journal of Global Change Data & Discovery, 2018,2(2): 151-155,274-278.]
[45]
杜志威,张虹鸥,叶玉瑶,等.2000年以来广东省城市人口收缩的时空演变与影响因素[J]. 热带地理,2019,39(1):20-28. [Du Zhiwei, Zhang Hongou, Ye Yuyao, et al. Spatiotemporal evolution and influences of urban population shrinkage in Guangdong since 2000[J]. Tropical Geography, 2019,39(1):20-28.]
[46]
郝薇,王鹏飞. 京津冀农业劳动力及其老龄化研究[J]. 地理研究, 2019,38(11):2766-2777. [Hao Wei, Wang Pengfei. Research on the agricultural labor force and aging of Beijing-Tianjin-Hebei region [J]. Geographical Research, 2019,38(11):2766-2777.]
[47]
钟钰,巴雪真.农业强国视角下“农民”向“职业农民”的角色转变与路径[J]. 经济纵横,2023(9):38-47. [Zhong Yu, Ba Xuezhen. Transition of farmers to professional farmers in the context of building up China's strength in agriculture[J]. Economic Review Journal, 2023(9):38-47.]
[48]
李虹,邹庆.环境规制、资源禀赋与城市产业转型研究:基于资源型城市与非资源型城市的对比分析[J]. 经济研究,2018,53(11): 182-198. [Li Hong, Zou Qing. Environmental regulations, resource endowments and urban industry transformation: Comparative analysis of resource-based and non-resource-based cities[J]. Economic Research Journal, 2018,53(11):182-198.]
[49]
Rothbarth E. The conditions of economic progress[J]. The Economic Journal, 1941,51:120.
[50]
蔡昉. 人口转变、人口红利与刘易斯转折点[J]. 经济研究,2010, 45(4): 4-13. [Cai Fang. Demographic transition, demographic dividend, and Lewis turning point in China[J]. Economic Research Journal, 2010,45(4):4-13.]
[51]
蔡昉.人口红利:认识中国经济增长的有益框架[J]. 经济研究,2022, 57(10):4-9. [Cai Fang. Demographic dividend: A beneficial framework for understanding China's economic growth[J]. Economic Research Journal, 2022,57(10):4-9.]
[52]
Sanchez Martínez M, Samaan D, Ernst E, et al. World Employment and Social Outlook: Trends 2023[R/OL]. (2023-01-16) [2023-10-15]. International Labour Organization, 2023. https://www.ilo.org/global/research/global-reports/weso/WCMS_865332/langen/index.htm.